标签归档:image

设置Matplotlib颜色条大小以匹配图形

问题:设置Matplotlib颜色条大小以匹配图形

我无法在像这样的imshow图上获得与该图相同的高度的色条,但事后没有使用Photoshop。如何获得与之匹配的高度?

I cannot get the colorbar on imshow graphs like this one to be the same height as the graph, short of using Photoshop after the fact. How do I get the heights to match?


回答 0

您可以使用matplotlib AxisDivider轻松完成此操作

链接页面中的示例也可以在不使用子图的情况下运行:

import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
import numpy as np

plt.figure()
ax = plt.gca()
im = ax.imshow(np.arange(100).reshape((10,10)))

# create an axes on the right side of ax. The width of cax will be 5%
# of ax and the padding between cax and ax will be fixed at 0.05 inch.
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)

plt.colorbar(im, cax=cax)

You can do this easily with a matplotlib AxisDivider.

The example from the linked page also works without using subplots:

import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
import numpy as np

plt.figure()
ax = plt.gca()
im = ax.imshow(np.arange(100).reshape((10,10)))

# create an axes on the right side of ax. The width of cax will be 5%
# of ax and the padding between cax and ax will be fixed at 0.05 inch.
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)

plt.colorbar(im, cax=cax)


回答 1

这种组合(以及接近这些值的组合)似乎“神奇地”对我起作用,无论显示大小如何,都可以将颜色条缩放到绘图。

plt.colorbar(im,fraction=0.046, pad=0.04)

它也不需要共享轴,这可以使绘图不成正方形。

This combination (and values near to these) seems to “magically” work for me to keep the colorbar scaled to the plot, no matter what size the display.

plt.colorbar(im,fraction=0.046, pad=0.04)

It also does not require sharing the axis which can get the plot out of square.


回答 2

@bogatron已经给出了matplotlib文档建议的答案产生正确的高度,但是它引入了另一个问题。现在,颜色条的宽度(以及颜色条和图之间的间隔)随图的宽度而变化。换句话说,颜色条的纵横比不再固定。

为了获得正确的高度给定的宽高比,您必须更深入地研究神秘的axes_grid1模块。

import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable, axes_size
import numpy as np

aspect = 20
pad_fraction = 0.5

ax = plt.gca()
im = ax.imshow(np.arange(200).reshape((20, 10)))
divider = make_axes_locatable(ax)
width = axes_size.AxesY(ax, aspect=1./aspect)
pad = axes_size.Fraction(pad_fraction, width)
cax = divider.append_axes("right", size=width, pad=pad)
plt.colorbar(im, cax=cax)

请注意,这指定了颜色条的宽度与绘图高度(与宽度相反)之前的图形)。

现在可以将颜色条和图形之间的间距指定为颜色条宽度的一部分,恕我直言,IMHO比图形宽度的一部分有意义得多。

更新:

我在主题上创建了一个IPython笔记本,将上面的代码打包到一个易于重用的函数中:

import matplotlib.pyplot as plt
from mpl_toolkits import axes_grid1

def add_colorbar(im, aspect=20, pad_fraction=0.5, **kwargs):
    """Add a vertical color bar to an image plot."""
    divider = axes_grid1.make_axes_locatable(im.axes)
    width = axes_grid1.axes_size.AxesY(im.axes, aspect=1./aspect)
    pad = axes_grid1.axes_size.Fraction(pad_fraction, width)
    current_ax = plt.gca()
    cax = divider.append_axes("right", size=width, pad=pad)
    plt.sca(current_ax)
    return im.axes.figure.colorbar(im, cax=cax, **kwargs)

可以这样使用:

im = plt.imshow(np.arange(200).reshape((20, 10)))
add_colorbar(im)

@bogatron already gave the answer suggested by the matplotlib docs, which produces the right height, but it introduces a different problem. Now the width of the colorbar (as well as the space between colorbar and plot) changes with the width of the plot. In other words, the aspect ratio of the colorbar is not fixed anymore.

To get both the right height and a given aspect ratio, you have to dig a bit deeper into the mysterious axes_grid1 module.

import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable, axes_size
import numpy as np

aspect = 20
pad_fraction = 0.5

ax = plt.gca()
im = ax.imshow(np.arange(200).reshape((20, 10)))
divider = make_axes_locatable(ax)
width = axes_size.AxesY(ax, aspect=1./aspect)
pad = axes_size.Fraction(pad_fraction, width)
cax = divider.append_axes("right", size=width, pad=pad)
plt.colorbar(im, cax=cax)

Note that this specifies the width of the colorbar w.r.t. the height of the plot (in contrast to the width of the figure, as it was before).

The spacing between colorbar and plot can now be specified as a fraction of the width of the colorbar, which is IMHO a much more meaningful number than a fraction of the figure width.

UPDATE:

I created an IPython notebook on the topic, where I packed the above code into an easily re-usable function:

import matplotlib.pyplot as plt
from mpl_toolkits import axes_grid1

def add_colorbar(im, aspect=20, pad_fraction=0.5, **kwargs):
    """Add a vertical color bar to an image plot."""
    divider = axes_grid1.make_axes_locatable(im.axes)
    width = axes_grid1.axes_size.AxesY(im.axes, aspect=1./aspect)
    pad = axes_grid1.axes_size.Fraction(pad_fraction, width)
    current_ax = plt.gca()
    cax = divider.append_axes("right", size=width, pad=pad)
    plt.sca(current_ax)
    return im.axes.figure.colorbar(im, cax=cax, **kwargs)

It can be used like this:

im = plt.imshow(np.arange(200).reshape((20, 10)))
add_colorbar(im)

回答 3

我感谢上述所有答案。然而,像一些答案和评论中指出,该axes_grid1模块不能地址GeoAxes,而调整fractionpadshrink,和其他类似参数不一定能给出非常精确的顺序,这真的令我烦恼。我认为,colorbar独自axes解决可能是解决所有提到的问题的更好解决方案。

import matplotlib.pyplot as plt
import numpy as np

fig=plt.figure()
ax = plt.axes()
im = ax.imshow(np.arange(100).reshape((10,10)))

# Create an axes for colorbar. The position of the axes is calculated based on the position of ax.
# You can change 0.01 to adjust the distance between the main image and the colorbar.
# You can change 0.02 to adjust the width of the colorbar.
# This practice is universal for both subplots and GeoAxes.

cax = fig.add_axes([ax.get_position().x1+0.01,ax.get_position().y0,0.02,ax.get_position().height])
plt.colorbar(im, cax=cax) # Similar to fig.colorbar(im, cax = cax)

结果

后来,我发现matplotlib.pyplot.colorbar官方文档也提供了ax选项,这些选项是现有的轴,将为颜色栏提供空间。因此,它对于多个子图很有用,请参见下文。

fig, ax = plt.subplots(2,1,figsize=(12,8)) # Caution, figsize will also influence positions.
im1 = ax[0].imshow(np.arange(100).reshape((10,10)), vmin = -100, vmax =100)
im2 = ax[1].imshow(np.arange(-100,0).reshape((10,10)), vmin = -100, vmax =100)
fig.colorbar(im1, ax=ax)

结果

同样,您也可以通过指定cax达到类似的效果,从我的角度来看,这是一种更准确的方法。

fig, ax = plt.subplots(2,1,figsize=(12,8))
im1 = ax[0].imshow(np.arange(100).reshape((10,10)), vmin = -100, vmax =100)
im2 = ax[1].imshow(np.arange(-100,0).reshape((10,10)), vmin = -100, vmax =100)
cax = fig.add_axes([ax[1].get_position().x1-0.25,ax[1].get_position().y0,0.02,ax[0].get_position().y1-ax[1].get_position().y0])
fig.colorbar(im1, cax=cax)

结果

I appreciate all the answers above. However, like some answers and comments pointed out, the axes_grid1 module cannot address GeoAxes, whereas adjusting fraction, pad, shrink, and other similar parameters cannot necessarily give the very precise order, which really bothers me. I believe that giving the colorbar its own axes might be a better solution to address all the issues that have been mentioned.

Code

import matplotlib.pyplot as plt
import numpy as np

fig=plt.figure()
ax = plt.axes()
im = ax.imshow(np.arange(100).reshape((10,10)))

# Create an axes for colorbar. The position of the axes is calculated based on the position of ax.
# You can change 0.01 to adjust the distance between the main image and the colorbar.
# You can change 0.02 to adjust the width of the colorbar.
# This practice is universal for both subplots and GeoAxes.

cax = fig.add_axes([ax.get_position().x1+0.01,ax.get_position().y0,0.02,ax.get_position().height])
plt.colorbar(im, cax=cax) # Similar to fig.colorbar(im, cax = cax)

Result

Later on, I find matplotlib.pyplot.colorbar official documentation also gives ax option, which are existing axes that will provide room for the colorbar. Therefore, it is useful for multiple subplots, see following.

Code

fig, ax = plt.subplots(2,1,figsize=(12,8)) # Caution, figsize will also influence positions.
im1 = ax[0].imshow(np.arange(100).reshape((10,10)), vmin = -100, vmax =100)
im2 = ax[1].imshow(np.arange(-100,0).reshape((10,10)), vmin = -100, vmax =100)
fig.colorbar(im1, ax=ax)

Result

Again, you can also achieve similar effects by specifying cax, a more accurate way from my perspective.

Code

fig, ax = plt.subplots(2,1,figsize=(12,8))
im1 = ax[0].imshow(np.arange(100).reshape((10,10)), vmin = -100, vmax =100)
im2 = ax[1].imshow(np.arange(-100,0).reshape((10,10)), vmin = -100, vmax =100)
cax = fig.add_axes([ax[1].get_position().x1-0.25,ax[1].get_position().y0,0.02,ax[0].get_position().y1-ax[1].get_position().y0])
fig.colorbar(im1, cax=cax)

Result


回答 4

当您创建 colorbar分数和/或收缩参数尝试。

从文件:

分数0.15; 用于颜色条的原始轴的比例

缩小1.0;缩小颜色条的分数

When you create the colorbar try using the fraction and/or shrink parameters.

From the documents:

fraction 0.15; fraction of original axes to use for colorbar

shrink 1.0; fraction by which to shrink the colorbar


回答 5

以上所有解决方案都是好的,但是我最喜欢@Steve和@bejota的解决方案,因为它们不涉及花哨的调用并且具有通用性。

通用的意思是适用于任何类型的轴,包括GeoAxes。例如,您已投影了要映射的轴:

projection = cartopy.crs.UTM(zone='17N')
ax = plt.axes(projection=projection)
im = ax.imshow(np.arange(200).reshape((20, 10)))

调用

cax = divider.append_axes("right", size=width, pad=pad)

将失败: KeyException: map_projection

因此,使用所有类型的轴处理颜色条大小的唯一通用方法是:

ax.colorbar(im, fraction=0.046, pad=0.04)

使用介于0.035到0.046之间的分数以获得最佳尺寸。但是,必须调整小数和paddig的值,以使其最适合您的绘图,并且根据颜色条的方向是垂直位置还是水平位置,它们的值将有所不同。

All the above solutions are good, but I like @Steve’s and @bejota’s the best as they do not involve fancy calls and are universal.

By universal I mean that works with any type of axes including GeoAxes. For example, it you have projected axes for mapping:

projection = cartopy.crs.UTM(zone='17N')
ax = plt.axes(projection=projection)
im = ax.imshow(np.arange(200).reshape((20, 10)))

a call to

cax = divider.append_axes("right", size=width, pad=pad)

will fail with: KeyException: map_projection

Therefore, the only universal way of dealing colorbar size with all types of axes is:

ax.colorbar(im, fraction=0.046, pad=0.04)

Work with fraction from 0.035 to 0.046 to get your best size. However, the values for the fraction and paddig will need to be adjusted to get the best fit for your plot and will differ depending if the orientation of the colorbar is in vertical position or horizontal.


适用于Python 3的图片库

问题:适用于Python 3的图片库

什么是python-3而不是PIL来处理图像?

What is python-3 using instead of PIL for manipulating Images?


回答 0

“友好的PIL叉子” 枕头可在Python 2和3上使用。请查看Github项目以获取支持矩阵等。

The “friendly PIL fork” Pillow works on Python 2 and 3. Check out the Github project for support matrix and so on.


回答 1

Christoph Gohlke设法为高达3.3的python版本构建了PIL(仅适用于Windows):http ://www.lfd.uci.edu/~gohlke/pythonlibs/

我用Python 3.2尝试了他的PIL版本,并且图像打开/创建/像素操作/保存了所有工作。

Christoph Gohlke managed to build PIL (for Windows only) for python versions up to 3.3: http://www.lfd.uci.edu/~gohlke/pythonlibs/

I tried his version of PIL with Python 3.2, and image open/create/pixel manipulation/save all work.


回答 2

Qt与图形效果很好。在我看来,它比PIL更通用。

您可以获得图形处理所需的所有功能,但也有矢量图形,甚至支持实际打印机。而所有这些都在一个统一的API中QPainter

要使用Qt,您需要一个Python绑定:PySidePyQt4
它们都支持Python 3。

这是一个简单的示例,该示例加载JPG图像,在坐标(20,20)处绘制半径为10的抗锯齿圆,并使用这些坐标处的像素颜色,并将修改后的图像另存为PNG文件:

from PySide.QtCore import *
from PySide.QtGui import *

app = QCoreApplication([])

img = QImage('input.jpg')

g = QPainter(img)
g.setRenderHint(QPainter.Antialiasing)
g.setBrush(QColor(img.pixel(20, 20)))
g.drawEllipse(QPoint(20, 20), 10, 10)
g.end()

img.save('output.png')

但是请注意,此解决方案是“重量级”的,因为Qt是用于制作GUI应用程序的大型框架。

Qt works very well with graphics. In my opinion it is more versatile than PIL.

You get all the features you want for graphics manipulation, but there’s also vector graphics and even support for real printers. And all of that in one uniform API, QPainter.

To use Qt you need a Python binding for it: PySide or PyQt4.
They both support Python 3.

Here is a simple example that loads a JPG image, draws an antialiased circle of radius 10 at coordinates (20, 20) with the color of the pixel that was at those coordinates and saves the modified image as a PNG file:

from PySide.QtCore import *
from PySide.QtGui import *

app = QCoreApplication([])

img = QImage('input.jpg')

g = QPainter(img)
g.setRenderHint(QPainter.Antialiasing)
g.setBrush(QColor(img.pixel(20, 20)))
g.drawEllipse(QPoint(20, 20), 10, 10)
g.end()

img.save('output.png')

But please note that this solution is quite ‘heavyweight’, because Qt is a large framework for making GUI applications.


回答 3

截至2012年3月30日,我尝试并未能在GitHub上使用sloonz fork打开图像。我把它编译好了,但是实际上没有用。我还尝试构建gohlke的库,它也进行了编译,但是无法打开任何图像。有人在上面提到过PythonMagick,但它只能在Windows上编译。请参阅wxPython Wiki上的PythonMagick

PIL的最新更新是在2009年,虽然它的网站说他们正在使用Python 3端口,但是已经过去了3年,并且邮件列表变得越来越冷。

为了解决我的Python 3图像处理问题,我正在使用subprocess.call()执行ImageMagick shell命令。此方法有效。

请参阅子流程模块文档

As of March 30, 2012, I have tried and failed to get the sloonz fork on GitHub to open images. I got it to compile ok, but it didn’t actually work. I also tried building gohlke’s library, and it compiled also but failed to open any images. Someone mentioned PythonMagick above, but it only compiles on Windows. See PythonMagick on the wxPython wiki.

PIL was last updated in 2009, and while it’s website says they are working on a Python 3 port, it’s been 3 years, and the mailing list has gone cold.

To solve my Python 3 image manipulation problem, I am using subprocess.call() to execute ImageMagick shell commands. This method works.

See the subprocess module documentation.


回答 4

您可以在Python 3上使用我的软件包mahotas。它是基于numpy的,而不是基于PIL的。

You can use my package mahotas on Python 3. It is numpy-based rather than PIL based.


回答 5

您需要Pillow,这是在Python 3上安装它的方法:

pip3 install Pillow

如果那对您不起作用(应该),请尝试normal pip

pip install Pillow

You want the Pillow library, here is how to install it on Python 3:

pip3 install Pillow

If that does not work for you (it should), try normal pip:

pip install Pillow

回答 6

根据需要,scikit-image可能是最佳选择,其处理方式已经超越了PIL和当前版本的Pillow。保养得很好,至少和枕头一样多。而且,底层的数据结构来自Numpy和Scipy,这使其代码具有令人难以置信的互操作性。枕头无法处理的示例:

您可以在图库中看到其力量。 本文提供了一个很好的介绍。祝好运!

Depending on what is needed, scikit-image may be the best choice, with manipulations going way beyond PIL and the current version of Pillow. Very well-maintained, at least as much as Pillow. Also, the underlying data structures are from Numpy and Scipy, which makes its code incredibly interoperable. Examples that pillow can’t handle:

You can see its power in the gallery. This paper provides a great intro to it. Good luck!


回答 7

如果您使用的是Python3,还可以使用库PILasOPENCV,该库可在Python 2和3中使用。函数api调用与PIL或pillow中的函数相同,但在内部它与OpenCV和numpy一起加载,保存和操作图像。看看https://github.com/bunkahle/PILasOPENCV或使用pip install PILasOPENCV进行安装。并非所有PIL功能都已被模拟,但是最常用的功能都可以工作。

If you are on Python3 you can also use the library PILasOPENCV which works in Python 2 and 3. Function api calls are the same as in PIL or pillow but internally it works with OpenCV and numpy to load, save and manipulate images. Have a look at https://github.com/bunkahle/PILasOPENCV or install it with pip install PILasOPENCV. Not all PIL functions have been simulated but the most common functions work.


如何使用PIL将透明png图像与另一个图像合并

问题:如何使用PIL将透明png图像与另一个图像合并

我有一个透明的png图像“ foo.png”,并且用

im = Image.open("foo2.png");

现在我需要将foo.png与foo2.png合并。

(foo.png包含一些文本,我想在foo2.png上打印该文本)

I have a transparent png image “foo.png” and I’ve opened another image with

im = Image.open("foo2.png");

now what i need is to merge foo.png with foo2.png.

( foo.png contains some text and I want to print that text on foo2.png )


回答 0

import Image

background = Image.open("test1.png")
foreground = Image.open("test2.png")

background.paste(foreground, (0, 0), foreground)
background.show()

的第一个参数.paste()是要粘贴的图像。第二个是坐标,秘密调味料是第三个参数。它表示将用于粘贴图像的遮罩。如果通过透明图像,则Alpha通道将用作遮罩。

检查文档

import Image

background = Image.open("test1.png")
foreground = Image.open("test2.png")

background.paste(foreground, (0, 0), foreground)
background.show()

First parameter to .paste() is the image to paste. Second are coordinates, and the secret sauce is the third parameter. It indicates a mask that will be used to paste the image. If you pass a image with transparency, then the alpha channel is used as mask.

Check the docs.


回答 1

Image.paste当背景图像也包含透明度时,将无法正常工作。您需要使用真正的Alpha合成

枕头2.0包含alpha_composite执行此操作的功能。

background = Image.open("test1.png")
foreground = Image.open("test2.png")

Image.alpha_composite(background, foreground).save("test3.png")

编辑:两个图像都必须是RGBA类型。因此,convert('RGBA')如果它们带有调色板等,则需要调用。如果背景没有Alpha通道,则可以使用常规的粘贴方法(应该更快)。

Image.paste does not work as expected when the background image also contains transparency. You need to use real Alpha Compositing.

Pillow 2.0 contains an alpha_composite function that does this.

background = Image.open("test1.png")
foreground = Image.open("test2.png")

Image.alpha_composite(background, foreground).save("test3.png")

EDIT: Both images need to be of the type RGBA. So you need to call convert('RGBA') if they are paletted, etc.. If the background does not have an alpha channel, then you can use the regular paste method (which should be faster).


回答 2

正如olt已经指出的那样,Image.paste当源目标都包含alpha 时,将无法正常工作。

请考虑以下情形:

两个测试图像都包含alpha:

layer1 = Image.open("layer1.png")
layer2 = Image.open("layer2.png")

Image.paste像这样合成图像:

final1 = Image.new("RGBA", layer1.size)
final1.paste(layer1, (0,0), layer1)
final1.paste(layer2, (0,0), layer2)

产生以下图像(红色像素的叠加部分完全取自第二层。像素未正确混合):

Image.alpha_composite像这样合成图像:

final2 = Image.new("RGBA", layer1.size)
final2 = Image.alpha_composite(final2, layer1)
final2 = Image.alpha_composite(final2, layer2)

产生以下(正确)图像:

As olt already pointed out, Image.paste doesn’t work properly, when source and destination both contain alpha.

Consider the following scenario:

Two test images, both contain alpha:

layer1 = Image.open("layer1.png")
layer2 = Image.open("layer2.png")

Compositing image using Image.paste like so:

final1 = Image.new("RGBA", layer1.size)
final1.paste(layer1, (0,0), layer1)
final1.paste(layer2, (0,0), layer2)

produces the following image (the alpha part of the overlayed red pixels is completely taken from the 2nd layer. The pixels are not blended correctly):

Compositing image using Image.alpha_composite like so:

final2 = Image.new("RGBA", layer1.size)
final2 = Image.alpha_composite(final2, layer1)
final2 = Image.alpha_composite(final2, layer2)

produces the following (correct) image:


回答 3

也可以使用混合:

im1 = Image.open("im1.png")
im2 = Image.open("im2.png")
blended = Image.blend(im1, im2, alpha=0.5)
blended.save("blended.png")

One can also use blending:

im1 = Image.open("im1.png")
im2 = Image.open("im2.png")
blended = Image.blend(im1, im2, alpha=0.5)
blended.save("blended.png")

回答 4

def trans_paste(bg_img,fg_img,box=(0,0)):
    fg_img_trans = Image.new("RGBA",bg_img.size)
    fg_img_trans.paste(fg_img,box,mask=fg_img)
    new_img = Image.alpha_composite(bg_img,fg_img_trans)
    return new_img
def trans_paste(bg_img,fg_img,box=(0,0)):
    fg_img_trans = Image.new("RGBA",bg_img.size)
    fg_img_trans.paste(fg_img,box,mask=fg_img)
    new_img = Image.alpha_composite(bg_img,fg_img_trans)
    return new_img

回答 5

有类似的问题,很难找到答案。通过以下功能,您可以将具有透明度参数的图像以特定的偏移量粘贴到另一幅图像上。

import Image

def trans_paste(fg_img,bg_img,alpha=1.0,box=(0,0)):
    fg_img_trans = Image.new("RGBA",fg_img.size)
    fg_img_trans = Image.blend(fg_img_trans,fg_img,alpha)
    bg_img.paste(fg_img_trans,box,fg_img_trans)
    return bg_img

bg_img = Image.open("bg.png")
fg_img = Image.open("fg.png")
p = trans_paste(fg_img,bg_img,.7,(250,100))
p.show()

Had a similar question and had difficulty finding an answer. The following function allows you to paste an image with a transparency parameter over another image at a specific offset.

import Image

def trans_paste(fg_img,bg_img,alpha=1.0,box=(0,0)):
    fg_img_trans = Image.new("RGBA",fg_img.size)
    fg_img_trans = Image.blend(fg_img_trans,fg_img,alpha)
    bg_img.paste(fg_img_trans,box,fg_img_trans)
    return bg_img

bg_img = Image.open("bg.png")
fg_img = Image.open("fg.png")
p = trans_paste(fg_img,bg_img,.7,(250,100))
p.show()

回答 6

我结束了自己的编码的建议此评论用户@ P.Melch一个项目我正在做,并建议通过@Mithril。

我也编码了安全性,这是它的代码。(我链接了一个特定的提交,因为在此存储库的将来情况可能会发生变化)

注意:我希望图像中有numpy数组,例如np.array(Image.open(...)),输入A和B copy_from以及此链接的函数overlay参数。

依赖项是位于其之前的函数,copy_from方法和numpy数组,它们是要切片的PIL图像内容。

尽管该文件是非常面向类的,但是如果要使用该函数overlay_transparent,请确保将重命名self.frame为背景图像numpy数组。

或者,您可以仅复制整个文件(可能删除一些导入和Utils类),然后与此Frame类进行交互,如下所示:

# Assuming you named the file frame.py in the same directory
from frame import Frame

background = Frame()
overlay = Frame()

background.load_from_path("your path here")
overlay.load_from_path("your path here")

background.overlay_transparent(overlay.frame, x=300, y=200)

然后,您将其background.frame作为叠加和alpha合成数组,可以使用overlayed = Image.fromarray(background.frame)或类似的东西从中获取PIL图像:

overlayed = Frame()
overlayed.load_from_array(background.frame)

或者就像background.save("save path")直接取自alpha复合内部self.frame变量一样。

您可以读取该文件,并找到其它的一些功能,这个实现我喜欢的编码方法get_rgb_frame_arrayresize_by_ratioresize_to_resolutionrotategaussian_blurtransparencyvignetting:)

您可能想要删除该resolve_pending项目专用的方法。

很高兴能为您提供帮助,请务必查看我正在谈论的项目的回购协议,该问题和线程对我的发展大有帮助:)

I ended up coding myself the suggestion of this comment made by the user @P.Melch and suggested by @Mithril on a project I’m working on.

I coded out of bounds safety as well, here’s the code for it. (I linked a specific commit because things can change in the future of this repository)

Note: I expect numpy arrays from the images like so np.array(Image.open(...)) as the inputs A and B from copy_from and this linked function overlay arguments.

The dependencies are the function right before it, the copy_from method, and numpy arrays as the PIL Image content for slicing.

Though the file is very class oriented, if you want to use that function overlay_transparent, be sure to rename the self.frame to your background image numpy array.

Or you can just copy the whole file (probably remove some imports and the Utils class) and interact with this Frame class like so:

# Assuming you named the file frame.py in the same directory
from frame import Frame

background = Frame()
overlay = Frame()

background.load_from_path("your path here")
overlay.load_from_path("your path here")

background.overlay_transparent(overlay.frame, x=300, y=200)

Then you have your background.frame as the overlayed and alpha composited array, you can get a PIL image from it with overlayed = Image.fromarray(background.frame) or something like:

overlayed = Frame()
overlayed.load_from_array(background.frame)

Or just background.save("save path") as that takes directly from the alpha composited internal self.frame variable.

You can read the file and find some other nice functions with this implementation I coded like the methods get_rgb_frame_array, resize_by_ratio, resize_to_resolution, rotate, gaussian_blur, transparency, vignetting :)

You’d probably want to remove the resolve_pending method as that is specific for that project.

Glad if I helped you, be sure to check out the repo of the project I’m talking about, this question and thread helped me a lot on the development :)


如何将PIL图像转换为numpy数组?

问题:如何将PIL图像转换为numpy数组?

好吧,我想将PIL图像对象来回转换为numpy数组,因此我可以比PIL PixelAccess对象所允许的更快地进行逐像素转换。我已经找到了如何通过以下方式将像素信息放置在有用的3D numpy数组中:

pic = Image.open("foo.jpg")
pix = numpy.array(pic.getdata()).reshape(pic.size[0], pic.size[1], 3)

但是,在完成所有出色的转换之后,我似乎无法弄清楚如何将其重新加载到PIL对象中。我知道该putdata()方法,但似乎无法使其正常工作。

Alright, I’m toying around with converting a PIL image object back and forth to a numpy array so I can do some faster pixel by pixel transformations than PIL’s PixelAccess object would allow. I’ve figured out how to place the pixel information in a useful 3D numpy array by way of:

pic = Image.open("foo.jpg")
pix = numpy.array(pic.getdata()).reshape(pic.size[0], pic.size[1], 3)

But I can’t seem to figure out how to load it back into the PIL object after I’ve done all my awesome transforms. I’m aware of the putdata() method, but can’t quite seem to get it to behave.


回答 0

您并不是在说putdata()行为方式到底有多精确。我假设你在做

>>> pic.putdata(a)
Traceback (most recent call last):
  File "...blablabla.../PIL/Image.py", line 1185, in putdata
    self.im.putdata(data, scale, offset)
SystemError: new style getargs format but argument is not a tuple

这是因为putdata需要一个元组序列,并且您要给它一个numpy数组。这个

>>> data = list(tuple(pixel) for pixel in pix)
>>> pic.putdata(data)

可以工作,但是非常慢。

从PIL 1.1.6开始,在图像和numpy数组之间进行转换“正确”方法很简单

>>> pix = numpy.array(pic)

尽管结果数组的格式与您的格式不同(在这种情况下为3维数组或行/列/ rgb)。

然后,在对阵列进行更改之后,您应该可以执行任一操作pic.putdata(pix)或使用创建新图像Image.fromarray(pix)

You’re not saying how exactly putdata() is not behaving. I’m assuming you’re doing

>>> pic.putdata(a)
Traceback (most recent call last):
  File "...blablabla.../PIL/Image.py", line 1185, in putdata
    self.im.putdata(data, scale, offset)
SystemError: new style getargs format but argument is not a tuple

This is because putdata expects a sequence of tuples and you’re giving it a numpy array. This

>>> data = list(tuple(pixel) for pixel in pix)
>>> pic.putdata(data)

will work but it is very slow.

As of PIL 1.1.6, the “proper” way to convert between images and numpy arrays is simply

>>> pix = numpy.array(pic)

although the resulting array is in a different format than yours (3-d array or rows/columns/rgb in this case).

Then, after you make your changes to the array, you should be able to do either pic.putdata(pix) or create a new image with Image.fromarray(pix).


回答 1

I以数组形式打开:

>>> I = numpy.asarray(PIL.Image.open('test.jpg'))

对进行一些处理I,然后将其转换回图像:

>>> im = PIL.Image.fromarray(numpy.uint8(I))

使用FFT,Python过滤numpy图像

如果出于某种原因要明确地执行此操作,则此页面上的correlation.zip中有使用getdata()的pil2array()和array2pil()函数。

Open I as an array:

>>> I = numpy.asarray(PIL.Image.open('test.jpg'))

Do some stuff to I, then, convert it back to an image:

>>> im = PIL.Image.fromarray(numpy.uint8(I))

Filter numpy images with FFT, Python

If you want to do it explicitly for some reason, there are pil2array() and array2pil() functions using getdata() on this page in correlation.zip.


回答 2

我在Python 3.5中使用Pillow 4.1.1(PIL的后继产品)。枕头和numpy之间的转换非常简单。

from PIL import Image
import numpy as np
im = Image.open('1.jpg')
im2arr = np.array(im) # im2arr.shape: height x width x channel
arr2im = Image.fromarray(im2arr)

需要注意的一件事是,枕头样式im是专栏为主的,而numpy 样式是专栏的im2arr。但是,该功能Image.fromarray已经考虑了这一点。即,arr2im.size == im.sizearr2im.mode == im.mode在上面的例子。

在处理转换后的numpy数组时,例如在进行转换im2arr = np.rollaxis(im2arr, 2, 0)im2arr = np.transpose(im2arr, (2, 0, 1))转换为CxHxW格式时,我们应注意HxWxC数据格式。

I am using Pillow 4.1.1 (the successor of PIL) in Python 3.5. The conversion between Pillow and numpy is straightforward.

from PIL import Image
import numpy as np
im = Image.open('1.jpg')
im2arr = np.array(im) # im2arr.shape: height x width x channel
arr2im = Image.fromarray(im2arr)

One thing that needs noticing is that Pillow-style im is column-major while numpy-style im2arr is row-major. However, the function Image.fromarray already takes this into consideration. That is, arr2im.size == im.size and arr2im.mode == im.mode in the above example.

We should take care of the HxWxC data format when processing the transformed numpy arrays, e.g. do the transform im2arr = np.rollaxis(im2arr, 2, 0) or im2arr = np.transpose(im2arr, (2, 0, 1)) into CxHxW format.


回答 3

您需要通过以下方式将图像转换为numpy数组:

import numpy
import PIL

img = PIL.Image.open("foo.jpg").convert("L")
imgarr = numpy.array(img) 

You need to convert your image to a numpy array this way:

import numpy
import PIL

img = PIL.Image.open("foo.jpg").convert("L")
imgarr = numpy.array(img) 

回答 4

我今天使用的示例:

import PIL
import numpy
from PIL import Image

def resize_image(numpy_array_image, new_height):
    # convert nympy array image to PIL.Image
    image = Image.fromarray(numpy.uint8(numpy_array_image))
    old_width = float(image.size[0])
    old_height = float(image.size[1])
    ratio = float( new_height / old_height)
    new_width = int(old_width * ratio)
    image = image.resize((new_width, new_height), PIL.Image.ANTIALIAS)
    # convert PIL.Image into nympy array back again
    return array(image)

The example, I have used today:

import PIL
import numpy
from PIL import Image

def resize_image(numpy_array_image, new_height):
    # convert nympy array image to PIL.Image
    image = Image.fromarray(numpy.uint8(numpy_array_image))
    old_width = float(image.size[0])
    old_height = float(image.size[1])
    ratio = float( new_height / old_height)
    new_width = int(old_width * ratio)
    image = image.resize((new_width, new_height), PIL.Image.ANTIALIAS)
    # convert PIL.Image into nympy array back again
    return array(image)

回答 5

如果图像以Blob格式(即数据库)存储,则可以使用Billal Begueradj解释的相同技术将图像从Blob转换为字节数组。

就我而言,我需要将图像存储在db表的blob列中:

def select_all_X_values(conn):
    cur = conn.cursor()
    cur.execute("SELECT ImageData from PiecesTable")    
    rows = cur.fetchall()    
    return rows

然后,我创建了一个辅助函数,将我的数据集更改为np.array:

X_dataset = select_all_X_values(conn)
imagesList = convertToByteIO(np.array(X_dataset))

def convertToByteIO(imagesArray):
    """
    # Converts an array of images into an array of Bytes
    """
    imagesList = []

    for i in range(len(imagesArray)):  
        img = Image.open(BytesIO(imagesArray[i])).convert("RGB")
        imagesList.insert(i, np.array(img))

    return imagesList

之后,我可以在神经网络中使用byteArrays了。

plt.imshow(imagesList[0])

If your image is stored in a Blob format (i.e. in a database) you can use the same technique explained by Billal Begueradj to convert your image from Blobs to a byte array.

In my case, I needed my images where stored in a blob column in a db table:

def select_all_X_values(conn):
    cur = conn.cursor()
    cur.execute("SELECT ImageData from PiecesTable")    
    rows = cur.fetchall()    
    return rows

I then created a helper function to change my dataset into np.array:

X_dataset = select_all_X_values(conn)
imagesList = convertToByteIO(np.array(X_dataset))

def convertToByteIO(imagesArray):
    """
    # Converts an array of images into an array of Bytes
    """
    imagesList = []

    for i in range(len(imagesArray)):  
        img = Image.open(BytesIO(imagesArray[i])).convert("RGB")
        imagesList.insert(i, np.array(img))

    return imagesList

After this, I was able to use the byteArrays in my Neural Network.

plt.imshow(imagesList[0])

回答 6

转换Numpy to PIL图像并PIL to Numpy

import numpy as np
from PIL import Image

def pilToNumpy(img):
    return np.array(img)

def NumpyToPil(img):
    return Image.fromarray(img)

Convert Numpy to PIL image and PIL to Numpy

import numpy as np
from PIL import Image

def pilToNumpy(img):
    return np.array(img)

def NumpyToPil(img):
    return Image.fromarray(img)

回答 7

def imshow(img):
    img = img / 2 + 0.5     # unnormalize
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
    plt.show()

您可以通过在压缩特征后将图像解析为numpy()函数来将图像转换为numpy(非规范化)

def imshow(img):
    img = img / 2 + 0.5     # unnormalize
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
    plt.show()

You can transform the image into numpy by parsing the image into numpy() function after squishing out the features( unnormalization)


如何将numpy数组转换为(并显示)图像?

问题:如何将numpy数组转换为(并显示)图像?

我因此创建了一个数组:

import numpy as np
data = np.zeros( (512,512,3), dtype=np.uint8)
data[256,256] = [255,0,0]

我要执行的操作是在512×512图像的中心显示一个红点。(至少从…开始,我想我可以从那里找出其余的内容)

I have created an array thusly:

import numpy as np
data = np.zeros( (512,512,3), dtype=np.uint8)
data[256,256] = [255,0,0]

What I want this to do is display a single red dot in the center of a 512×512 image. (At least to begin with… I think I can figure out the rest from there)


回答 0

您可以使用PIL创建(并显示)图像:

from PIL import Image
import numpy as np

w, h = 512, 512
data = np.zeros((h, w, 3), dtype=np.uint8)
data[0:256, 0:256] = [255, 0, 0] # red patch in upper left
img = Image.fromarray(data, 'RGB')
img.save('my.png')
img.show()

You could use PIL to create (and display) an image:

from PIL import Image
import numpy as np

w, h = 512, 512
data = np.zeros((h, w, 3), dtype=np.uint8)
data[0:256, 0:256] = [255, 0, 0] # red patch in upper left
img = Image.fromarray(data, 'RGB')
img.save('my.png')
img.show()

回答 1

以下应该工作:

from matplotlib import pyplot as plt
plt.imshow(data, interpolation='nearest')
plt.show()

如果您使用的是Jupyter笔记本/实验室,请在导入matplotlib之前使用以下内联命令:

%matplotlib inline 

The following should work:

from matplotlib import pyplot as plt
plt.imshow(data, interpolation='nearest')
plt.show()

If you are using Jupyter notebook/lab, use this inline command before importing matplotlib:

%matplotlib inline 

回答 2

最短的路径是使用scipy,如下所示:

from scipy.misc import toimage
toimage(data).show()

这也需要安装PIL或Pillow。

同样需要PIL或Pillow但可以调用其他查看器的类似方法是:

from scipy.misc import imshow
imshow(data)

Shortest path is to use scipy, like this:

from scipy.misc import toimage
toimage(data).show()

This requires PIL or Pillow to be installed as well.

A similar approach also requiring PIL or Pillow but which may invoke a different viewer is:

from scipy.misc import imshow
imshow(data)

回答 3

使用pygame,您可以打开一个窗口,以像素阵列的形式获取表面,然后从那里进行操作。但是,您需要将numpy数组复制到Surface数组中,这比在pygame Surface本身上进行实际图形操作要慢得多。

Using pygame, you can open a window, get the surface as an array of pixels, and manipulate as you want from there. You’ll need to copy your numpy array into the surface array, however, which will be much slower than doing actual graphics operations on the pygame surfaces themselves.


回答 4

如何使用示例显示存储在numpy数组中的图像(在Jupyter笔记本中有效)

我知道有更简单的答案,但是这一答案将使您了解如何从numpy数组中淹没图像。

加载示例

from sklearn.datasets import load_digits
digits = load_digits()
digits.images.shape   #this will give you (1797, 8, 8). 1797 images, each 8 x 8 in size

显示一幅图像的阵列

digits.images[0]
array([[ 0.,  0.,  5., 13.,  9.,  1.,  0.,  0.],
       [ 0.,  0., 13., 15., 10., 15.,  5.,  0.],
       [ 0.,  3., 15.,  2.,  0., 11.,  8.,  0.],
       [ 0.,  4., 12.,  0.,  0.,  8.,  8.,  0.],
       [ 0.,  5.,  8.,  0.,  0.,  9.,  8.,  0.],
       [ 0.,  4., 11.,  0.,  1., 12.,  7.,  0.],
       [ 0.,  2., 14.,  5., 10., 12.,  0.,  0.],
       [ 0.,  0.,  6., 13., 10.,  0.,  0.,  0.]])

创建空的10 x 10子图以可视化100张图像

import matplotlib.pyplot as plt
fig, axes = plt.subplots(10,10, figsize=(8,8))

绘制100张图像

for i,ax in enumerate(axes.flat):
    ax.imshow(digits.images[i])

结果:

怎么axes.flat办? 它创建了numpy枚举器,因此您可以在轴上迭代以在其上绘制对象。 例:

import numpy as np
x = np.arange(6).reshape(2,3)
x.flat
for item in (x.flat):
    print (item, end=' ')

How to show images stored in numpy array with example (works in Jupyter notebook)

I know there are simpler answers but this one will give you understanding of how images are actually drawn from a numpy array.

Load example

from sklearn.datasets import load_digits
digits = load_digits()
digits.images.shape   #this will give you (1797, 8, 8). 1797 images, each 8 x 8 in size

Display array of one image

digits.images[0]
array([[ 0.,  0.,  5., 13.,  9.,  1.,  0.,  0.],
       [ 0.,  0., 13., 15., 10., 15.,  5.,  0.],
       [ 0.,  3., 15.,  2.,  0., 11.,  8.,  0.],
       [ 0.,  4., 12.,  0.,  0.,  8.,  8.,  0.],
       [ 0.,  5.,  8.,  0.,  0.,  9.,  8.,  0.],
       [ 0.,  4., 11.,  0.,  1., 12.,  7.,  0.],
       [ 0.,  2., 14.,  5., 10., 12.,  0.,  0.],
       [ 0.,  0.,  6., 13., 10.,  0.,  0.,  0.]])

Create empty 10 x 10 subplots for visualizing 100 images

import matplotlib.pyplot as plt
fig, axes = plt.subplots(10,10, figsize=(8,8))

Plotting 100 images

for i,ax in enumerate(axes.flat):
    ax.imshow(digits.images[i])

Result:

What does axes.flat do? It creates a numpy enumerator so you can iterate over axis in order to draw objects on them. Example:

import numpy as np
x = np.arange(6).reshape(2,3)
x.flat
for item in (x.flat):
    print (item, end=' ')

回答 5

例如,使用枕头的fromarray:

from PIL import Image
from numpy import *

im = array(Image.open('image.jpg'))
Image.fromarray(im).show()

Using pillow’s fromarray, for example:

from PIL import Image
from numpy import *

im = array(Image.open('image.jpg'))
Image.fromarray(im).show()

回答 6

Python图像库可以显示使用numpy的阵列的图像。查看此页面以获取示例代码:

编辑:正如该页面底部的注释所述,您应该检查最新的发行说明,这会使此过程变得更加简单:

http://effbot.org/zone/pil-changes-116.htm

The Python Imaging Library can display images using Numpy arrays. Take a look at this page for sample code:

EDIT: As the note on the bottom of that page says, you should check the latest release notes which make this much simpler:

http://effbot.org/zone/pil-changes-116.htm


回答 7

使用matplotlib进行补充。我发现在执行计算机视觉任务时很方便。假设您有dtype = int32的数据

from matplotlib import pyplot as plot
import numpy as np

fig = plot.figure()
ax = fig.add_subplot(1, 1, 1)
# make sure your data is in H W C, otherwise you can change it by
# data = data.transpose((_, _, _))
data = np.zeros((512,512,3), dtype=np.int32)
data[256,256] = [255,0,0]
ax.imshow(data.astype(np.uint8))

Supplement for doing so with matplotlib. I found it handy doing computer vision tasks. Let’s say you got data with dtype = int32

from matplotlib import pyplot as plot
import numpy as np

fig = plot.figure()
ax = fig.add_subplot(1, 1, 1)
# make sure your data is in H W C, otherwise you can change it by
# data = data.transpose((_, _, _))
data = np.zeros((512,512,3), dtype=np.int32)
data[256,256] = [255,0,0]
ax.imshow(data.astype(np.uint8))

如何使用PIL获取图片尺寸?

问题:如何使用PIL获取图片尺寸?

如何使用PIL或任何其他Python库获取图片边的大小?

How do I get a size of a pictures sides with PIL or any other Python library?


回答 0

from PIL import Image

im = Image.open('whatever.png')
width, height = im.size

根据文档

from PIL import Image

im = Image.open('whatever.png')
width, height = im.size

According to the documentation.


回答 1

您可以使用Pillow(网站文档GitHubPyPI)。Pillow与PIL具有相同的界面,但可与Python 3一起使用。

安装

$ pip install Pillow

如果您没有管理员权限(在Debian上为sudo),则可以使用

$ pip install --user Pillow

有关安装的其他说明在这里

from PIL import Image
with Image.open(filepath) as img:
    width, height = img.size

速度

这需要3.21秒才能获得30336张图像(JPG从31×21到424×428,来自Kaggle 国家数据科学碗的训练数据)

这可能是使用枕头而不是自己写的东西的最重要的原因。而且您应该使用Pillow而不是PIL(python-imaging),因为它可以在Python 3中使用。

备选方案1:Numpy(已弃用)

我坚持scipy.ndimage.imread认为信息仍然存在,但请记住:

不推荐使用imread!在SciPy 1.0.0中不推荐使用imread,而在1.2.0中已删除了[read]。

import scipy.ndimage
height, width, channels = scipy.ndimage.imread(filepath).shape

备选方案2:Pygame

import pygame
img = pygame.image.load(filepath)
width = img.get_width()
height = img.get_height()

You can use Pillow (Website, Documentation, GitHub, PyPI). Pillow has the same interface as PIL, but works with Python 3.

Installation

$ pip install Pillow

If you don’t have administrator rights (sudo on Debian), you can use

$ pip install --user Pillow

Other notes regarding the installation are here.

Code

from PIL import Image
with Image.open(filepath) as img:
    width, height = img.size

Speed

This needed 3.21 seconds for 30336 images (JPGs from 31×21 to 424×428, training data from National Data Science Bowl on Kaggle)

This is probably the most important reason to use Pillow instead of something self-written. And you should use Pillow instead of PIL (python-imaging), because it works with Python 3.

Alternative #1: Numpy (deprecated)

I keep scipy.ndimage.imread as the information is still out there, but keep in mind:

imread is deprecated! imread is deprecated in SciPy 1.0.0, and [was] removed in 1.2.0.

import scipy.ndimage
height, width, channels = scipy.ndimage.imread(filepath).shape

Alternative #2: Pygame

import pygame
img = pygame.image.load(filepath)
width = img.get_width()
height = img.get_height()

回答 2

由于scipyimread已过时,使用imageio.imread

  1. 安装- pip install imageio
  2. height, width, channels = imageio.imread(filepath).shape

Since scipy‘s imread is deprecated, use imageio.imread.

  1. Install – pip install imageio
  2. Use height, width, channels = imageio.imread(filepath).shape

回答 3

这是一个完整的示例,从URL加载图像,使用PIL创建,打印尺寸并调整大小…

import requests
h = { 'User-Agent': 'Neo'}
r = requests.get("https://images.freeimages.com/images/large-previews/85c/football-1442407.jpg", headers=h)

from PIL import Image
from io import BytesIO
# create image from binary content
i = Image.open(BytesIO(r.content))


width, height = i.size
print(width, height)
i = i.resize((100,100))
display(i)

This is a complete example loading image from URL, creating with PIL, printing the size and resizing…

import requests
h = { 'User-Agent': 'Neo'}
r = requests.get("https://images.freeimages.com/images/large-previews/85c/football-1442407.jpg", headers=h)

from PIL import Image
from io import BytesIO
# create image from binary content
i = Image.open(BytesIO(r.content))


width, height = i.size
print(width, height)
i = i.resize((100,100))
display(i)

回答 4

这是从Python 3中的给定URL获取图像大小的方法:

from PIL import Image
import urllib.request
from io import BytesIO

file = BytesIO(urllib.request.urlopen('http://getwallpapers.com/wallpaper/full/b/8/d/32803.jpg').read())
im = Image.open(file)
width, height = im.size

Here’s how you get the image size from the given URL in Python 3:

from PIL import Image
import urllib.request
from io import BytesIO

file = BytesIO(urllib.request.urlopen('http://getwallpapers.com/wallpaper/full/b/8/d/32803.jpg').read())
im = Image.open(file)
width, height = im.size

回答 5

以下给出尺寸和通道:

import numpy as np
from PIL import Image

with Image.open(filepath) as img:
    shape = np.array(img).shape

Followings gives dimensions as well as channels:

import numpy as np
from PIL import Image

with Image.open(filepath) as img:
    shape = np.array(img).shape

将Numpy数组另存为图像

问题:将Numpy数组另存为图像

我有一个Numpy数组类型的矩阵。如何将其作为映像写入磁盘?任何格式都可以使用(png,jpeg,bmp …)。一个重要的约束是不存在PIL。

I have a matrix in the type of a Numpy array. How would I write it to disk it as an image? Any format works (png, jpeg, bmp…). One important constraint is that PIL is not present.


回答 0

您可以使用PyPNG。这是一个纯Python(无依赖项)开源PNG编码器/解码器,它支持将NumPy数组写为图像。

You can use PyPNG. It’s a pure Python (no dependencies) open source PNG encoder/decoder and it supports writing NumPy arrays as images.


回答 1

这使用了PIL,但也许有人会觉得有用:

import scipy.misc
scipy.misc.imsave('outfile.jpg', image_array)

编辑:当前scipy版本开始规范化所有图像,以便min(数据)变为黑色,而max(data)变为白色。如果数据应该是精确的灰度级或精确的RGB通道,则这是不需要的。解决方案:

import scipy.misc
scipy.misc.toimage(image_array, cmin=0.0, cmax=...).save('outfile.jpg')

This uses PIL, but maybe some might find it useful:

import scipy.misc
scipy.misc.imsave('outfile.jpg', image_array)

EDIT: The current scipy version started to normalize all images so that min(data) become black and max(data) become white. This is unwanted if the data should be exact grey levels or exact RGB channels. The solution:

import scipy.misc
scipy.misc.toimage(image_array, cmin=0.0, cmax=...).save('outfile.jpg')

回答 2

使用PIL的答案(以防万一)。

给定一个numpy数组“ A”:

from PIL import Image
im = Image.fromarray(A)
im.save("your_file.jpeg")

您可以用几乎任何所需的格式替换“ jpeg”。有关格式的更多详细信息,请点击此处

An answer using PIL (just in case it’s useful).

given a numpy array “A”:

from PIL import Image
im = Image.fromarray(A)
im.save("your_file.jpeg")

you can replace “jpeg” with almost any format you want. More details about the formats here


回答 3

matplotlib

import matplotlib

matplotlib.image.imsave('name.png', array)

适用于matplotlib 1.3.1,我不知道较低的版本。从文档字符串:

Arguments:
  *fname*:
    A string containing a path to a filename, or a Python file-like object.
    If *format* is *None* and *fname* is a string, the output
    format is deduced from the extension of the filename.
  *arr*:
    An MxN (luminance), MxNx3 (RGB) or MxNx4 (RGBA) array.

With matplotlib:

import matplotlib

matplotlib.image.imsave('name.png', array)

Works with matplotlib 1.3.1, I don’t know about lower version. From the docstring:

Arguments:
  *fname*:
    A string containing a path to a filename, or a Python file-like object.
    If *format* is *None* and *fname* is a string, the output
    format is deduced from the extension of the filename.
  *arr*:
    An MxN (luminance), MxNx3 (RGB) or MxNx4 (RGBA) array.


回答 4

纯Python(2和3),无第三方依赖的代码段。

此函数写入压缩的真彩色(每个像素4个字节)RGBAPNG。

def write_png(buf, width, height):
    """ buf: must be bytes or a bytearray in Python3.x,
        a regular string in Python2.x.
    """
    import zlib, struct

    # reverse the vertical line order and add null bytes at the start
    width_byte_4 = width * 4
    raw_data = b''.join(
        b'\x00' + buf[span:span + width_byte_4]
        for span in range((height - 1) * width_byte_4, -1, - width_byte_4)
    )

    def png_pack(png_tag, data):
        chunk_head = png_tag + data
        return (struct.pack("!I", len(data)) +
                chunk_head +
                struct.pack("!I", 0xFFFFFFFF & zlib.crc32(chunk_head)))

    return b''.join([
        b'\x89PNG\r\n\x1a\n',
        png_pack(b'IHDR', struct.pack("!2I5B", width, height, 8, 6, 0, 0, 0)),
        png_pack(b'IDAT', zlib.compress(raw_data, 9)),
        png_pack(b'IEND', b'')])

…数据应直接写入以二进制格式打开的文件,如:

data = write_png(buf, 64, 64)
with open("my_image.png", 'wb') as fh:
    fh.write(data)

Pure Python (2 & 3), a snippet without 3rd party dependencies.

This function writes compressed, true-color (4 bytes per pixel) RGBA PNG’s.

def write_png(buf, width, height):
    """ buf: must be bytes or a bytearray in Python3.x,
        a regular string in Python2.x.
    """
    import zlib, struct

    # reverse the vertical line order and add null bytes at the start
    width_byte_4 = width * 4
    raw_data = b''.join(
        b'\x00' + buf[span:span + width_byte_4]
        for span in range((height - 1) * width_byte_4, -1, - width_byte_4)
    )

    def png_pack(png_tag, data):
        chunk_head = png_tag + data
        return (struct.pack("!I", len(data)) +
                chunk_head +
                struct.pack("!I", 0xFFFFFFFF & zlib.crc32(chunk_head)))

    return b''.join([
        b'\x89PNG\r\n\x1a\n',
        png_pack(b'IHDR', struct.pack("!2I5B", width, height, 8, 6, 0, 0, 0)),
        png_pack(b'IDAT', zlib.compress(raw_data, 9)),
        png_pack(b'IEND', b'')])

… The data should be written directly to a file opened as binary, as in:

data = write_png(buf, 64, 64)
with open("my_image.png", 'wb') as fh:
    fh.write(data)


回答 5

opencv用于python的文档在此处提供文档)。

import cv2
import numpy as np

cv2.imwrite("filename.png", np.zeros((10,10)))

如果您需要进行除保存以外的更多处理,则很有用。

There’s opencv for python (documentation here).

import cv2
import numpy as np

img = ... # Your image as a numpy array 

cv2.imwrite("filename.png", img)

useful if you need to do more processing other than saving.


回答 6

如果您有matplotlib,则可以执行以下操作:

import matplotlib.pyplot as plt
plt.imshow(matrix) #Needs to be in row,col order
plt.savefig(filename)

这将保存绘图(而不是图像本身)。

If you have matplotlib, you can do:

import matplotlib.pyplot as plt
plt.imshow(matrix) #Needs to be in row,col order
plt.savefig(filename)

This will save the plot (not the images itself).


回答 7

您可以在Python中使用’skimage’库

例:

from skimage.io import imsave
imsave('Path_to_your_folder/File_name.jpg',your_array)

You can use ‘skimage’ library in Python

Example:

from skimage.io import imsave
imsave('Path_to_your_folder/File_name.jpg',your_array)

回答 8

scipy.misc给出有关imsave功能的弃用警告,并建议使用imageio替代功能。

import imageio
imageio.imwrite('image_name.png', img)

scipy.misc gives deprecation warning about imsave function and suggests usage of imageio instead.

import imageio
imageio.imwrite('image_name.png', img)

回答 9

@ ideasman42的答案的附录:

def saveAsPNG(array, filename):
    import struct
    if any([len(row) != len(array[0]) for row in array]):
        raise ValueError, "Array should have elements of equal size"

                                #First row becomes top row of image.
    flat = []; map(flat.extend, reversed(array))
                                 #Big-endian, unsigned 32-byte integer.
    buf = b''.join([struct.pack('>I', ((0xffFFff & i32)<<8)|(i32>>24) )
                    for i32 in flat])   #Rotate from ARGB to RGBA.

    data = write_png(buf, len(array[0]), len(array))
    f = open(filename, 'wb')
    f.write(data)
    f.close()

因此,您可以执行以下操作:

saveAsPNG([[0xffFF0000, 0xffFFFF00],
           [0xff00aa77, 0xff333333]], 'test_grid.png')

生产test_grid.png

(透明度也可以通过减少中的高字节来实现0xff。)

Addendum to @ideasman42’s answer:

def saveAsPNG(array, filename):
    import struct
    if any([len(row) != len(array[0]) for row in array]):
        raise ValueError, "Array should have elements of equal size"

                                #First row becomes top row of image.
    flat = []; map(flat.extend, reversed(array))
                                 #Big-endian, unsigned 32-byte integer.
    buf = b''.join([struct.pack('>I', ((0xffFFff & i32)<<8)|(i32>>24) )
                    for i32 in flat])   #Rotate from ARGB to RGBA.

    data = write_png(buf, len(array[0]), len(array))
    f = open(filename, 'wb')
    f.write(data)
    f.close()

So you can do:

saveAsPNG([[0xffFF0000, 0xffFFFF00],
           [0xff00aa77, 0xff333333]], 'test_grid.png')

Producing test_grid.png:

(Transparency also works, by reducing the high byte from 0xff.)


回答 10

对于那些希望直接工作的示例:

from PIL import Image
import numpy

w,h = 200,100
img = numpy.zeros((h,w,3),dtype=numpy.uint8) # has to be unsigned bytes

img[:] = (0,0,255) # fill blue

x,y = 40,20
img[y:y+30, x:x+50] = (255,0,0) # 50x30 red box

Image.fromarray(img).convert("RGB").save("art.png") # don't need to convert

另外,如果您想要高质量的jpeg
.save(file, subsampling=0, quality=100)

For those looking for a direct fully working example:

from PIL import Image
import numpy

w,h = 200,100
img = numpy.zeros((h,w,3),dtype=numpy.uint8) # has to be unsigned bytes

img[:] = (0,0,255) # fill blue

x,y = 40,20
img[y:y+30, x:x+50] = (255,0,0) # 50x30 red box

Image.fromarray(img).convert("RGB").save("art.png") # don't need to convert

also, if you want high quality jpeg’s
.save(file, subsampling=0, quality=100)


回答 11

matplotlib svn具有一项新功能,可以将图像保存为图像,而无需保存轴等。如果您不想安装svn(从matplotlib svn中从image.py直接复制,删除了为简洁起见,请使用docstring):

def imsave(fname, arr, vmin=None, vmax=None, cmap=None, format=None, origin=None):
    from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
    from matplotlib.figure import Figure

    fig = Figure(figsize=arr.shape[::-1], dpi=1, frameon=False)
    canvas = FigureCanvas(fig)
    fig.figimage(arr, cmap=cmap, vmin=vmin, vmax=vmax, origin=origin)
    fig.savefig(fname, dpi=1, format=format)

matplotlib svn has a new function to save images as just an image — no axes etc. it’s a very simple function to backport too, if you don’t want to install svn (copied straight from image.py in matplotlib svn, removed the docstring for brevity):

def imsave(fname, arr, vmin=None, vmax=None, cmap=None, format=None, origin=None):
    from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
    from matplotlib.figure import Figure

    fig = Figure(figsize=arr.shape[::-1], dpi=1, frameon=False)
    canvas = FigureCanvas(fig)
    fig.figimage(arr, cmap=cmap, vmin=vmin, vmax=vmax, origin=origin)
    fig.savefig(fname, dpi=1, format=format)

回答 12

这个世界可能不需要另一个程序包来将numpy数组写入PNG文件,但是对于那些不够用的人,我最近放上了numpngwgithub:

https://github.com/WarrenWeckesser/numpngw

并在pypi上:https ://pypi.python.org/pypi/numpngw/

唯一的外部依赖项是numpy。

这是examples存储库目录中的第一个示例。基本线很简单

write_png('example1.png', img)

imgnumpy数组在哪里。该行之前的所有代码都是import语句和要创建的代码img

import numpy as np
from numpngw import write_png


# Example 1
#
# Create an 8-bit RGB image.

img = np.zeros((80, 128, 3), dtype=np.uint8)

grad = np.linspace(0, 255, img.shape[1])

img[:16, :, :] = 127
img[16:32, :, 0] = grad
img[32:48, :, 1] = grad[::-1]
img[48:64, :, 2] = grad
img[64:, :, :] = 127

write_png('example1.png', img)

这是它创建的PNG文件:

The world probably doesn’t need yet another package for writing a numpy array to a PNG file, but for those who can’t get enough, I recently put up numpngw on github:

https://github.com/WarrenWeckesser/numpngw

and on pypi: https://pypi.python.org/pypi/numpngw/

The only external dependency is numpy.

Here’s the first example from the examples directory of the repository. The essential line is simply

write_png('example1.png', img)

where img is a numpy array. All the code before that line is import statements and code to create img.

import numpy as np
from numpngw import write_png


# Example 1
#
# Create an 8-bit RGB image.

img = np.zeros((80, 128, 3), dtype=np.uint8)

grad = np.linspace(0, 255, img.shape[1])

img[:16, :, :] = 127
img[16:32, :, 0] = grad
img[32:48, :, 1] = grad[::-1]
img[48:64, :, 2] = grad
img[64:, :, :] = 127

write_png('example1.png', img)

Here’s the PNG file that it creates:


回答 13

假设您想要一个灰度图像:

im = Image.new('L', (width, height))
im.putdata(an_array.flatten().tolist())
im.save("image.tiff")

Assuming you want a grayscale image:

im = Image.new('L', (width, height))
im.putdata(an_array.flatten().tolist())
im.save("image.tiff")

回答 14

图像是一个Python库,它提供了一个轻松的界面来读取和写入各种图像数据,包括动画图像,视频,体积数据和科学格式。它是跨平台的,可在Python 2.7和3.4+上运行,并且易于安装。

这是灰度图像的示例:

import numpy as np
import imageio

# data is numpy array with grayscale value for each pixel.
data = np.array([70,80,82,72,58,58,60,63,54,58,60,48,89,115,121,119])

# 16 pixels can be converted into square of 4x4 or 2x8 or 8x2
data = data.reshape((4, 4)).astype('uint8')

# save image
imageio.imwrite('pic.jpg', data)

Imageio is a Python library that provides an easy interface to read and write a wide range of image data, including animated images, video, volumetric data, and scientific formats. It is cross-platform, runs on Python 2.7 and 3.4+, and is easy to install.

This is example for grayscale image:

import numpy as np
import imageio

# data is numpy array with grayscale value for each pixel.
data = np.array([70,80,82,72,58,58,60,63,54,58,60,48,89,115,121,119])

# 16 pixels can be converted into square of 4x4 or 2x8 or 8x2
data = data.reshape((4, 4)).astype('uint8')

# save image
imageio.imwrite('pic.jpg', data)

回答 15

如果您已经碰巧已经使用[Py] Qt,则可能对qimage2ndarray感兴趣。从1.4版(刚刚发布)开始,也支持PySide,它将有一个imsave(filename, array)类似于scipy的小功能,但使用Qt而不是PIL。在1.3中,只需使用以下内容:

qImage = array2qimage(image, normalize = False) # create QImage from ndarray
success = qImage.save(filename) # use Qt's image IO functions for saving PNG/JPG/..

(1.4的另一个优点是它是一个纯python解决方案,这使其更加轻巧。)

If you happen to use [Py]Qt already, you may be interested in qimage2ndarray. Starting with version 1.4 (just released), PySide is supported as well, and there will be a tiny imsave(filename, array) function similar to scipy’s, but using Qt instead of PIL. With 1.3, just use something like the following:

qImage = array2qimage(image, normalize = False) # create QImage from ndarray
success = qImage.save(filename) # use Qt's image IO functions for saving PNG/JPG/..

(Another advantage of 1.4 is that it is a pure python solution, which makes this even more lightweight.)


回答 16

如果您在python环境Spyder中工作,那么与仅在变量资源管理器中右键单击数组,然后选择“显示图像”选项相比,它变得更加容易。

这将要求您将图像大多数以PNG格式保存到dsik。

在这种情况下,将不需要PIL库。

If you are working in python environment Spyder, then it cannot get more easier than to just right click the array in variable explorer, and then choose Show Image option.

This will ask you to save image to dsik, mostly in PNG format.

PIL library will not be needed in this case.


回答 17

使用cv2.imwrite

import cv2
assert mat.shape[2] == 1 or mat.shape[2] == 3, 'the third dim should be channel'
cv2.imwrite(path, mat) # note the form of data should be height - width - channel  

Use cv2.imwrite.

import cv2
assert mat.shape[2] == 1 or mat.shape[2] == 3, 'the third dim should be channel'
cv2.imwrite(path, mat) # note the form of data should be height - width - channel  

回答 18

为了将一个numpy数组另存为图像,U有几种选择:

1)其他最佳:OpenCV

 import cv2   
 cv2.imwrite('file name with extension(like .jpg)', numpy_array)

2)Matplotlib

  from matplotlib import pyplot as plt
  plt.imsave('file name with extension(like .jpg)', numpy_array)

3)PIL

  from PIL import Image
  image = Image.fromarray(numpy_array)
  image.save('file name with extension(like .jpg)')

4)…

for saving a numpy array as image, U have several choices:

1) best of other: OpenCV

 import cv2   
 cv2.imwrite('file name with extension(like .jpg)', numpy_array)

2) Matplotlib

  from matplotlib import pyplot as plt
  plt.imsave('file name with extension(like .jpg)', numpy_array)

3) PIL

  from PIL import Image
  image = Image.fromarray(numpy_array)
  image.save('file name with extension(like .jpg)')

4) …


如何从本地计算机或Web资源将图像或图片嵌入jupyter笔记本中?

问题:如何从本地计算机或Web资源将图像或图片嵌入jupyter笔记本中?

我想将图像包括在Jupyter笔记本中。

如果我执行以下操作,则它会起作用:

from IPython.display import Image
Image("img/picture.png")

但是我想将图像包含在markdown单元格中,以下代码给出404错误:

![title]("img/picture.png")

我也试过

![texte]("http://localhost:8888/img/picture.png")

但是我仍然得到同样的错误:

404 GET /notebooks/%22/home/user/folder/img/picture.png%22 (127.0.0.1) 2.74ms referer=http://localhost:8888/notebooks/notebook.ipynb

I would like to include image in a jupyter notebook.

If I did the following, it works :

from IPython.display import Image
Image("img/picture.png")

But I would like to include the images in a markdown cell and the following code gives a 404 error :

![title]("img/picture.png")

I also tried

![texte]("http://localhost:8888/img/picture.png")

But I still get the same error :

404 GET /notebooks/%22/home/user/folder/img/picture.png%22 (127.0.0.1) 2.74ms referer=http://localhost:8888/notebooks/notebook.ipynb

回答 0

在markdown中,不得在图像文件名称的前后加上引号!

如果您仔细阅读错误消息,您将%22在链接中看到两个部分。那是html编码的引号。

你必须换线

![title]("img/picture.png")

![title](img/picture.png)

更新

假定您具有以下文件结构,并且您jupyter notebook在存储文件的目录example.ipynb(<-包含映像的标记)中运行 命令:

/
+-- example.ipynb
+-- img
    +-- picture.png

You mustn’t use quotation marks around the name of the image files in markdown!

If you carefully read your error message, you will see the two %22 parts in the link. That is the html encoded quotation mark.

You have to change the line

![title]("img/picture.png")

to

![title](img/picture.png)

UPDATE

It is assumed, that you have the following file structure and that you run the jupyter notebook command in the directory where the file example.ipynb (<– contains the markdown for the image) is stored:

/
+-- example.ipynb
+-- img
    +-- picture.png

回答 1

有几种方法可以在Jupyter笔记本中发布图像:

通过HTML:

from IPython.display import Image
from IPython.core.display import HTML 
Image(url= "http://my_site.com/my_picture.jpg")

您保留使用HTML标签调整大小等的功能。

Image(url= "http://my_site.com/my_picture.jpg", width=100, height=100)

您还可以通过相对或绝对路径显示本地存储的图像。

PATH = "/Users/reblochonMasque/Documents/Drawings/"
Image(filename = PATH + "My_picture.jpg", width=100, height=100)

如果图像宽于显示设置: 谢谢

用于unconfined=True禁用图像的最大宽度限制

from IPython.core.display import Image, display
display(Image('https://i.ytimg.com/vi/j22DmsZEv30/maxresdefault.jpg', width=1900, unconfined=True))

或通过降价:

  • 确保该单元格是降价单元格,而不是代码单元格,感谢@游凯超在评论中)
  • 请注意,在某些系统上,降价标记不允许在文件名中使用空格。感谢评论中的@CoffeeTableEspresso和@zebralamy)
    (在macOS上,只要您位于降价单元格上,您就可以这样做:![title](../image 1.png),而不必担心空白)。

对于网络图像:

![Image of Yaktocat](https://octodex.github.com/images/yaktocat.png)

如@cristianmtr所示。请注意不要同时使用这些引号""''网址中的引号。

或本地的:

![title](img/picture.png)

由@Sebastian演示

There are several ways to post an image in Jupyter notebooks:

via HTML:

from IPython.display import Image
from IPython.core.display import HTML 
Image(url= "http://my_site.com/my_picture.jpg")

You retain the ability to use HTML tags to resize, etc…

Image(url= "http://my_site.com/my_picture.jpg", width=100, height=100)

You can also display images stored locally, either via relative or absolute path.

PATH = "/Users/reblochonMasque/Documents/Drawings/"
Image(filename = PATH + "My_picture.jpg", width=100, height=100)

if the image it wider than the display settings: thanks

use unconfined=True to disable max-width confinement of the image

from IPython.core.display import Image, display
display(Image('https://i.ytimg.com/vi/j22DmsZEv30/maxresdefault.jpg', width=1900, unconfined=True))

or via markdown:

  • make sure the cell is a markdown cell, and not a code cell, thanks @游凯超 in the comments)
  • Please note that on some systems, the markdown does not allow white space in the filenames. Thanks to @CoffeeTableEspresso and @zebralamy in the comments)
    (On macos, as long as you are on a markdown cell you would do like this: ![title](../image 1.png), and not worry about the white space).

for a web image:

![Image of Yaktocat](https://octodex.github.com/images/yaktocat.png)

as shown by @cristianmtr Paying attention not to use either these quotes "" or those '' around the url.

or a local one:

![title](img/picture.png)

demonstrated by @Sebastian


回答 2

另外,您可以使用纯HTML <img src>,它允许您更改高度和宽度,并仍由markdown解释器读取:

<img src="subdirectory/MyImage.png" width=60 height=60 />

Alternatively, you can use a plain HTML <img src>, which allows you to change height and width and is still read by the markdown interpreter:

<img src="subdirectory/MyImage.png" width=60 height=60 />

回答 3

我知道这并不完全相关,但是由于当您搜索“ 如何在Jupyter中显示图像 ”时,此答案多次排名第一,因此也请考虑此答案。

您可以使用matplotlib如下显示图像。

import matplotlib.pyplot as plt
import matplotlib.image as mpimg
image = mpimg.imread("your_image.png")
plt.imshow(image)
plt.show()

I know this is not fully relevant, but since this answer is ranked first many a times when you search ‘how to display images in Jupyter‘, please consider this answer as well.

You could use matplotlib to show an image as follows.

import matplotlib.pyplot as plt
import matplotlib.image as mpimg
image = mpimg.imread("your_image.png")
plt.imshow(image)
plt.show()

回答 4

我很惊讶这里没有人提到html cell magic选项。来自文档(IPython,但与Jupyter相同)

%% html

Render the cell as a block of HTML

I’m surprised no one here has mentioned the html cell magic option. from the docs (IPython, but same for Jupyter)

%%html

Render the cell as a block of HTML

回答 5

除了使用HTML的其他答案(在Markdown中或使用%%HTML魔术:

如果您需要指定图像高度,则将无法使用:

<img src="image.png" height=50> <-- will not work

这是因为Jupyter中的CSS样式height: auto默认情况下会使用img标签来覆盖HTML高度属性。您需要改写CSS height属性:

<img src="image.png" style="height:50px"> <-- works

In addition to the other answers using HTML (either in Markdown or using the %%HTML magic:

If you need to specify the image height, this will not work:

<img src="image.png" height=50> <-- will not work

That is because the CSS styling in Jupyter uses height: auto per default for the img tags, which overrides the HTML height attribute. You need need to overwrite the CSS height attribute instead:

<img src="image.png" style="height:50px"> <-- works

回答 6

将图像直接插入Jupyter笔记本中。

注意:您应该在计算机上拥有图像的本地副本

您可以将图像插入Jupyter笔记本本身。这样,您无需将图像单独保存在文件夹中。

脚步:

  1. 将单元格转换为markdown

    • 在所选单元格上按M

    • 在菜单栏中,单元格>单元格类型>降价。
      注意:将单元格转换为Markdown非常重要,否则,第2步中的“插入图片”选项将无效)
  2. 现在转到菜单栏,然后​​选择编辑->插入图像。

  3. 从磁盘中选择图像并上传。

  4. Ctrl+ EnterShift+ Enter

这将使图像成为笔记本的一部分,您无需在目录或Github中上传。我觉得这看起来更干净,而且不容易出现URL损坏的问题。

Insert the image directly in the Jupyter notebook.

Note: You should have a local copy of the image on your computer

You can insert the image in the Jupyter notebook itself. This way you don’t need to keep the image separately in the folder.

Steps:

  1. Convert the cell to markdown by:

    • pressing M on the selected cell
      OR
    • From menu bar, Cell > Cell Type > Markdown.
      (Note: It’s important to convert the cell to Markdown, otherwise the “Insert Image” option in Step 2 will not be active)
  2. Now go to menu bar and select Edit -> Insert Image.

  3. Select image from your disk and upload.

  4. Press Ctrl+Enter or Shift+Enter.

This will make the image as part of the notebook and you don’t need to upload in the directory or Github. I feel this looks more clean and not prone to broken URL issue.


回答 7

使用Markdown的方法如下:

![Image of Yaktocat](https://octodex.github.com/images/yaktocat.png)

Here’s how you can do it with Markdown:

![Image of Yaktocat](https://octodex.github.com/images/yaktocat.png)

回答 8

  1. 将单元格模式设置为降价
  2. 将图像拖放到单元格中。将创建以下命令:

![image.png](attachment:image.png)

  1. 执行/运行单元格,图像出现。

该图像实际上是嵌入在ipynb笔记本中的,您无需弄乱单独的文件。不幸的是,这还不适用于Jupyter-Lab(v 1.1.4)。

编辑:在JupyterLab版本1.2.6中工作

  1. Set cell mode to Markdown
  2. Drag and drop your image into the cell. The following command will be created:

![image.png](attachment:image.png)

  1. Execute/Run the cell and the image shows up.

The image is actually embedded in the ipynb Notebook and you don’t need to mess around with separate files. This is unfortunately not working with Jupyter-Lab (v 1.1.4) yet.

Edit: Works in JupyterLab Version 1.2.6


回答 9

如果要使用Jupyter Notebook API(现在不再使用IPython),则可以找到ipywidgets Jupyter的子项目。您有一个Image小部件。Docstring指定您有value一个字节参数。因此,您可以执行以下操作:

import requests
from ipywidgets import Image

Image(value=requests.get('https://octodex.github.com/images/yaktocat.png').content)

我同意,使用Markdown样式更简单。但是它向您显示了图像显示Notebook API。您还可以使用widthheight参数调整图像的大小。

If you want to use the Jupyter Notebook API (and not the IPython one anymore), I find the ipywidgets Jupyter’s sub-project. You have an Image widget. Docstring specifies that you have a value parameter which is a bytes. So you can do:

import requests
from ipywidgets import Image

Image(value=requests.get('https://octodex.github.com/images/yaktocat.png').content)

I agree, it’s simpler to use the Markdown style. But it shows you the Image display Notebook API. You can also resize the image with the width and height parameters.


回答 10

这是JupyterPython3的解决方案:

我将图像放在名为的文件夹中ImageTest。我的目录是:

C:\Users\MyPcName\ImageTest\image.png

为了显示图像,我使用了以下表达式:

![title](/notebooks/ImageTest/image.png "ShowMyImage")

还要注意/\

Here is a Solution for Jupyter and Python3:

I droped my images in a folder named ImageTest. My directory is:

C:\Users\MyPcName\ImageTest\image.png

To show the image I used this expression:

![title](/notebooks/ImageTest/image.png "ShowMyImage")

Also watch out for / and \


回答 11

这在降价单元中对我有用。无论如何,如果图像或简单文件,我都无需特别提及。

![](files/picture.png)

This works for me in a markdown cell. Somehow I do not need to mention specifically if its an image or a simple file.

![](files/picture.png)

回答 12

我发现的一件事是,图像的路径必须与笔记本计算机最初加载的位置有关。如果您将CD转到其他目录,例如“图片”,则Markdown路径仍相对于原始加载目录。

One thing I found is the path of your image must be relative to wherever the notebook was originally loaded from. if you cd to a different directory, such as Pictures your Markdown path is still relative to the original loading directory.


回答 13

同意,我遇到了同样的问题,这是可行的,而没有奏效的:

WORKED: <img src="Docs/pinoutDOIT32devkitv1.png" width="800"/>
*DOES NOT WORK: <img src="/Docs/pinoutDOIT32devkitv1.png" width="800"/>
DOES NOT WORK: <img src="./Docs/pinoutDOIT32devkitv1.png" width="800"/>*

Agreed, i had the same issues and this is what worked and what did not:

WORKED: <img src="Docs/pinoutDOIT32devkitv1.png" width="800"/>
*DOES NOT WORK: <img src="/Docs/pinoutDOIT32devkitv1.png" width="800"/>
DOES NOT WORK: <img src="./Docs/pinoutDOIT32devkitv1.png" width="800"/>*

回答 14

尽管上面的许多答案都提供了使用文件或Python代码嵌入图像的方法,但是有一种方法可以仅使用markdown和base64将图像嵌入jupyter笔记本本身!

要在浏览器中查看图像,您可以访问data:image/png;base64,**image data here**以base64编码的PNG图像或data:image/jpg;base64,**image data here**以base64编码的JPG图像的链接。在此答案的末尾可以找到一个示例链接。

要将其嵌入到markdown页面中,只需使用与文件Answers类似的结构,但要使用base64链接:![**description**](data:image/**type**;base64,**base64 data**)。现在,您的图像已100%嵌入到Jupyter Notebook文件中!

示例链接: 

降价示例: ![smile]()

While a lot of the above answers give ways to embed an image using a file or with Python code, there is a way to embed an image in the jupyter notebook itself using only markdown and base64!

To view an image in the browser, you can visit the link data:image/png;base64,**image data here** for a base64-encoded PNG image, or data:image/jpg;base64,**image data here** for a base64-encoded JPG image. An example link can be found at the end of this answer.

To embed this into a markdown page, simply use a similar construct as the file answers, but with a base64 link instead: ![**description**](data:image/**type**;base64,**base64 data**). Now your image is 100% embedded into your Jupyter Notebook file!

Example link: 

Example markdown: ![smile]()


如何使用PIL调整图像大小并保持其纵横比?

问题:如何使用PIL调整图像大小并保持其纵横比?

有什么明显的方法可以实现我所缺少的吗?我只是想制作缩略图。

Is there an obvious way to do this that I’m missing? I’m just trying to make thumbnails.


回答 0

定义最大大小。然后,通过计算调整大小比例min(maxwidth/width, maxheight/height)

适当的大小是oldsize*ratio

当然,还有一个库方法可以做到这一点:method Image.thumbnail
以下是PIL文档中的一个(经过编辑的)示例。

import os, sys
import Image

size = 128, 128

for infile in sys.argv[1:]:
    outfile = os.path.splitext(infile)[0] + ".thumbnail"
    if infile != outfile:
        try:
            im = Image.open(infile)
            im.thumbnail(size, Image.ANTIALIAS)
            im.save(outfile, "JPEG")
        except IOError:
            print "cannot create thumbnail for '%s'" % infile

Define a maximum size. Then, compute a resize ratio by taking min(maxwidth/width, maxheight/height).

The proper size is oldsize*ratio.

There is of course also a library method to do this: the method Image.thumbnail.
Below is an (edited) example from the PIL documentation.

import os, sys
import Image

size = 128, 128

for infile in sys.argv[1:]:
    outfile = os.path.splitext(infile)[0] + ".thumbnail"
    if infile != outfile:
        try:
            im = Image.open(infile)
            im.thumbnail(size, Image.ANTIALIAS)
            im.save(outfile, "JPEG")
        except IOError:
            print "cannot create thumbnail for '%s'" % infile

回答 1

该脚本将使用PIL(Python影像库)将图像(somepic.jpg)调整为300像素的宽度,并且高度与新宽度成比例。它通过确定原始宽度(img.size [0])的300个像素的百分比,然后将原始高度(img.size [1])乘以该百分比,来实现此目的。将“ basewidth”更改为任何其他数字以更改图像的默认宽度。

from PIL import Image

basewidth = 300
img = Image.open('somepic.jpg')
wpercent = (basewidth/float(img.size[0]))
hsize = int((float(img.size[1])*float(wpercent)))
img = img.resize((basewidth,hsize), Image.ANTIALIAS)
img.save('sompic.jpg') 

This script will resize an image (somepic.jpg) using PIL (Python Imaging Library) to a width of 300 pixels and a height proportional to the new width. It does this by determining what percentage 300 pixels is of the original width (img.size[0]) and then multiplying the original height (img.size[1]) by that percentage. Change “basewidth” to any other number to change the default width of your images.

from PIL import Image

basewidth = 300
img = Image.open('somepic.jpg')
wpercent = (basewidth/float(img.size[0]))
hsize = int((float(img.size[1])*float(wpercent)))
img = img.resize((basewidth,hsize), Image.ANTIALIAS)
img.save('sompic.jpg') 

回答 2

我还建议使用PIL的缩略图方法,因为它可以消除您的所有比率麻烦。

不过,有一个重要提示:替换

im.thumbnail(size)

im.thumbnail(size,Image.ANTIALIAS)

默认情况下,PIL使用Image.NEAREST过滤器来调整大小,这会导致性能良好但质量较差。

I also recommend using PIL’s thumbnail method, because it removes all the ratio hassles from you.

One important hint, though: Replace

im.thumbnail(size)

with

im.thumbnail(size,Image.ANTIALIAS)

by default, PIL uses the Image.NEAREST filter for resizing which results in good performance, but poor quality.


回答 3

基于@tomvon,我完成了以下操作(选择您的情况):

a)调整高度我知道新的宽度,所以我需要新的高度

new_width  = 680
new_height = new_width * height / width 

b)调整宽度我知道新的高度,所以我需要新的宽度

new_height = 680
new_width  = new_height * width / height

然后:

img = img.resize((new_width, new_height), Image.ANTIALIAS)

Based in @tomvon, I finished using the following (pick your case):

a) Resizing height (I know the new width, so I need the new height)

new_width  = 680
new_height = new_width * height / width 

b) Resizing width (I know the new height, so I need the new width)

new_height = 680
new_width  = new_height * width / height

Then just:

img = img.resize((new_width, new_height), Image.ANTIALIAS)

回答 4

PIL已经可以选择裁剪图像

img = ImageOps.fit(img, size, Image.ANTIALIAS)

PIL already has the option to crop an image

img = ImageOps.fit(img, size, Image.ANTIALIAS)

回答 5

from PIL import Image

img = Image.open('/your image path/image.jpg') # image extension *.png,*.jpg
new_width  = 200
new_height = 300
img = img.resize((new_width, new_height), Image.ANTIALIAS)
img.save('output image name.png') # format may what you want *.png, *jpg, *.gif
from PIL import Image

img = Image.open('/your image path/image.jpg') # image extension *.png,*.jpg
new_width  = 200
new_height = 300
img = img.resize((new_width, new_height), Image.ANTIALIAS)
img.save('output image name.png') # format may what you want *.png, *jpg, *.gif

回答 6

如果您尝试保持相同的宽高比,那么是否不按原始尺寸的某个百分比调整尺寸?

例如,原始尺寸的一半

half = 0.5
out = im.resize( [int(half * s) for s in im.size] )

If you are trying to maintain the same aspect ratio, then wouldn’t you resize by some percentage of the original size?

For example, half the original size

half = 0.5
out = im.resize( [int(half * s) for s in im.size] )

回答 7

from PIL import Image
from resizeimage import resizeimage

def resize_file(in_file, out_file, size):
    with open(in_file) as fd:
        image = resizeimage.resize_thumbnail(Image.open(fd), size)
    image.save(out_file)
    image.close()

resize_file('foo.tif', 'foo_small.jpg', (256, 256))

我使用这个库:

pip install python-resize-image
from PIL import Image
from resizeimage import resizeimage

def resize_file(in_file, out_file, size):
    with open(in_file) as fd:
        image = resizeimage.resize_thumbnail(Image.open(fd), size)
    image.save(out_file)
    image.close()

resize_file('foo.tif', 'foo_small.jpg', (256, 256))

I use this library:

pip install python-resize-image

回答 8

如果您不希望/不需要使用枕头打开图像,请使用以下命令:

from PIL import Image

new_img_arr = numpy.array(Image.fromarray(img_arr).resize((new_width, new_height), Image.ANTIALIAS))

If you don’t want / don’t have a need to open image with Pillow, use this:

from PIL import Image

new_img_arr = numpy.array(Image.fromarray(img_arr).resize((new_width, new_height), Image.ANTIALIAS))

回答 9

只需使用更现代的包装器更新此问题,该库即可包装Pillow(PIL的一个分支) https://pypi.org/project/python-resize-image/

允许你做这样的事情:

from PIL import Image
from resizeimage import resizeimage

fd_img = open('test-image.jpeg', 'r')
img = Image.open(fd_img)
img = resizeimage.resize_width(img, 200)
img.save('test-image-width.jpeg', img.format)
fd_img.close()

在上面的链接中堆了更多示例。

Just updating this question with a more modern wrapper This library wraps Pillow (a fork of PIL) https://pypi.org/project/python-resize-image/

Allowing you to do something like this :-

from PIL import Image
from resizeimage import resizeimage

fd_img = open('test-image.jpeg', 'r')
img = Image.open(fd_img)
img = resizeimage.resize_width(img, 200)
img.save('test-image-width.jpeg', img.format)
fd_img.close()

Heaps more examples in the above link.


回答 10

我试图调整幻灯片视频的某些图像的大小,因此,我不仅要一个最大尺寸,而且要一个最大宽度一个最大高度(视频帧的大小)。
总是有可能拍摄人像视频…
Image.thumbnail方法很有前途,但我无法将其放大到较小的图像。

因此,在找不到在此处(或其他位置)执行此操作的明显方法之后,我编写了此函数并将其放在此处以供以后使用:

from PIL import Image

def get_resized_img(img_path, video_size):
    img = Image.open(img_path)
    width, height = video_size  # these are the MAX dimensions
    video_ratio = width / height
    img_ratio = img.size[0] / img.size[1]
    if video_ratio >= 1:  # the video is wide
        if img_ratio <= video_ratio:  # image is not wide enough
            width_new = int(height * img_ratio)
            size_new = width_new, height
        else:  # image is wider than video
            height_new = int(width / img_ratio)
            size_new = width, height_new
    else:  # the video is tall
        if img_ratio >= video_ratio:  # image is not tall enough
            height_new = int(width / img_ratio)
            size_new = width, height_new
        else:  # image is taller than video
            width_new = int(height * img_ratio)
            size_new = width_new, height
    return img.resize(size_new, resample=Image.LANCZOS)

I was trying to resize some images for a slideshow video and because of that, I wanted not just one max dimension, but a max width and a max height (the size of the video frame).
And there was always the possibility of a portrait video…
The Image.thumbnail method was promising, but I could not make it upscale a smaller image.

So after I couldn’t find an obvious way to do that here (or at some other places), I wrote this function and put it here for the ones to come:

from PIL import Image

def get_resized_img(img_path, video_size):
    img = Image.open(img_path)
    width, height = video_size  # these are the MAX dimensions
    video_ratio = width / height
    img_ratio = img.size[0] / img.size[1]
    if video_ratio >= 1:  # the video is wide
        if img_ratio <= video_ratio:  # image is not wide enough
            width_new = int(height * img_ratio)
            size_new = width_new, height
        else:  # image is wider than video
            height_new = int(width / img_ratio)
            size_new = width, height_new
    else:  # the video is tall
        if img_ratio >= video_ratio:  # image is not tall enough
            height_new = int(width / img_ratio)
            size_new = width, height_new
        else:  # image is taller than video
            width_new = int(height * img_ratio)
            size_new = width_new, height
    return img.resize(size_new, resample=Image.LANCZOS)

回答 11

一种用于保持约束比率并通过最大宽度/高度的简单方法。不是最漂亮的,但是可以完成工作并且很容易理解:

def resize(img_path, max_px_size, output_folder):
    with Image.open(img_path) as img:
        width_0, height_0 = img.size
        out_f_name = os.path.split(img_path)[-1]
        out_f_path = os.path.join(output_folder, out_f_name)

        if max((width_0, height_0)) <= max_px_size:
            print('writing {} to disk (no change from original)'.format(out_f_path))
            img.save(out_f_path)
            return

        if width_0 > height_0:
            wpercent = max_px_size / float(width_0)
            hsize = int(float(height_0) * float(wpercent))
            img = img.resize((max_px_size, hsize), Image.ANTIALIAS)
            print('writing {} to disk'.format(out_f_path))
            img.save(out_f_path)
            return

        if width_0 < height_0:
            hpercent = max_px_size / float(height_0)
            wsize = int(float(width_0) * float(hpercent))
            img = img.resize((max_px_size, wsize), Image.ANTIALIAS)
            print('writing {} to disk'.format(out_f_path))
            img.save(out_f_path)
            return

这是一个使用此功能运行批处理图像大小调整的python脚本

A simple method for keeping constrained ratios and passing a max width / height. Not the prettiest but gets the job done and is easy to understand:

def resize(img_path, max_px_size, output_folder):
    with Image.open(img_path) as img:
        width_0, height_0 = img.size
        out_f_name = os.path.split(img_path)[-1]
        out_f_path = os.path.join(output_folder, out_f_name)

        if max((width_0, height_0)) <= max_px_size:
            print('writing {} to disk (no change from original)'.format(out_f_path))
            img.save(out_f_path)
            return

        if width_0 > height_0:
            wpercent = max_px_size / float(width_0)
            hsize = int(float(height_0) * float(wpercent))
            img = img.resize((max_px_size, hsize), Image.ANTIALIAS)
            print('writing {} to disk'.format(out_f_path))
            img.save(out_f_path)
            return

        if width_0 < height_0:
            hpercent = max_px_size / float(height_0)
            wsize = int(float(width_0) * float(hpercent))
            img = img.resize((max_px_size, wsize), Image.ANTIALIAS)
            print('writing {} to disk'.format(out_f_path))
            img.save(out_f_path)
            return

Here’s a python script that uses this function to run batch image resizing.


回答 12

已通过“ tomvon”更新了以上答案

from PIL import Image

img = Image.open(image_path)

width, height = img.size[:2]

if height > width:
    baseheight = 64
    hpercent = (baseheight/float(img.size[1]))
    wsize = int((float(img.size[0])*float(hpercent)))
    img = img.resize((wsize, baseheight), Image.ANTIALIAS)
    img.save('resized.jpg')
else:
    basewidth = 64
    wpercent = (basewidth/float(img.size[0]))
    hsize = int((float(img.size[1])*float(wpercent)))
    img = img.resize((basewidth,hsize), Image.ANTIALIAS)
    img.save('resized.jpg')

Have updated the answer above by “tomvon”

from PIL import Image

img = Image.open(image_path)

width, height = img.size[:2]

if height > width:
    baseheight = 64
    hpercent = (baseheight/float(img.size[1]))
    wsize = int((float(img.size[0])*float(hpercent)))
    img = img.resize((wsize, baseheight), Image.ANTIALIAS)
    img.save('resized.jpg')
else:
    basewidth = 64
    wpercent = (basewidth/float(img.size[0]))
    hsize = int((float(img.size[1])*float(wpercent)))
    img = img.resize((basewidth,hsize), Image.ANTIALIAS)
    img.save('resized.jpg')

回答 13

我的丑陋例子。

函数获取文件,例如:“ pic [0-9a-z]。[extension]”,将其大小调整为120×120,将节移动到中心并保存到“ ico [0-9a-z]。[extension]”,使用纵向和景观:

def imageResize(filepath):
    from PIL import Image
    file_dir=os.path.split(filepath)
    img = Image.open(filepath)

    if img.size[0] > img.size[1]:
        aspect = img.size[1]/120
        new_size = (img.size[0]/aspect, 120)
    else:
        aspect = img.size[0]/120
        new_size = (120, img.size[1]/aspect)
    img.resize(new_size).save(file_dir[0]+'/ico'+file_dir[1][3:])
    img = Image.open(file_dir[0]+'/ico'+file_dir[1][3:])

    if img.size[0] > img.size[1]:
        new_img = img.crop( (
            (((img.size[0])-120)/2),
            0,
            120+(((img.size[0])-120)/2),
            120
        ) )
    else:
        new_img = img.crop( (
            0,
            (((img.size[1])-120)/2),
            120,
            120+(((img.size[1])-120)/2)
        ) )

    new_img.save(file_dir[0]+'/ico'+file_dir[1][3:])

My ugly example.

Function get file like: “pic[0-9a-z].[extension]”, resize them to 120×120, moves section to center and save to “ico[0-9a-z].[extension]”, works with portrait and landscape:

def imageResize(filepath):
    from PIL import Image
    file_dir=os.path.split(filepath)
    img = Image.open(filepath)

    if img.size[0] > img.size[1]:
        aspect = img.size[1]/120
        new_size = (img.size[0]/aspect, 120)
    else:
        aspect = img.size[0]/120
        new_size = (120, img.size[1]/aspect)
    img.resize(new_size).save(file_dir[0]+'/ico'+file_dir[1][3:])
    img = Image.open(file_dir[0]+'/ico'+file_dir[1][3:])

    if img.size[0] > img.size[1]:
        new_img = img.crop( (
            (((img.size[0])-120)/2),
            0,
            120+(((img.size[0])-120)/2),
            120
        ) )
    else:
        new_img = img.crop( (
            0,
            (((img.size[1])-120)/2),
            120,
            120+(((img.size[1])-120)/2)
        ) )

    new_img.save(file_dir[0]+'/ico'+file_dir[1][3:])

回答 14

我以这种方式调整了图像的大小,并且效果很好

from io import BytesIO
from django.core.files.uploadedfile import InMemoryUploadedFile
import os, sys
from PIL import Image


def imageResize(image):
    outputIoStream = BytesIO()
    imageTemproaryResized = imageTemproary.resize( (1920,1080), Image.ANTIALIAS) 
    imageTemproaryResized.save(outputIoStream , format='PNG', quality='10') 
    outputIoStream.seek(0)
    uploadedImage = InMemoryUploadedFile(outputIoStream,'ImageField', "%s.jpg" % image.name.split('.')[0], 'image/jpeg', sys.getsizeof(outputIoStream), None)

    ## For upload local folder
    fs = FileSystemStorage()
    filename = fs.save(uploadedImage.name, uploadedImage)

I resizeed the image in such a way and it’s working very well

from io import BytesIO
from django.core.files.uploadedfile import InMemoryUploadedFile
import os, sys
from PIL import Image


def imageResize(image):
    outputIoStream = BytesIO()
    imageTemproaryResized = imageTemproary.resize( (1920,1080), Image.ANTIALIAS) 
    imageTemproaryResized.save(outputIoStream , format='PNG', quality='10') 
    outputIoStream.seek(0)
    uploadedImage = InMemoryUploadedFile(outputIoStream,'ImageField', "%s.jpg" % image.name.split('.')[0], 'image/jpeg', sys.getsizeof(outputIoStream), None)

    ## For upload local folder
    fs = FileSystemStorage()
    filename = fs.save(uploadedImage.name, uploadedImage)

回答 15

我还将添加一个调整大小的版本,以保持宽高比固定。在这种情况下,它将根据初始宽高比asp_rat(为float(!))调整高度以匹配新图像的宽度。但是,要将宽度调整为高度,您只需要注释一条线,然后在else循环中取消注释另一条线即可。您会在哪里看到。

您不需要分号(;),我保留它们只是为了提醒自己我经常使用的语言的语法。

from PIL import Image

img_path = "filename.png";
img = Image.open(img_path);     # puts our image to the buffer of the PIL.Image object

width, height = img.size;
asp_rat = width/height;

# Enter new width (in pixels)
new_width = 50;

# Enter new height (in pixels)
new_height = 54;

new_rat = new_width/new_height;

if (new_rat == asp_rat):
    img = img.resize((new_width, new_height), Image.ANTIALIAS); 

# adjusts the height to match the width
# NOTE: if you want to adjust the width to the height, instead -> 
# uncomment the second line (new_width) and comment the first one (new_height)
else:
    new_height = round(new_width / asp_rat);
    #new_width = round(new_height * asp_rat);
    img = img.resize((new_width, new_height), Image.ANTIALIAS);

# usage: resize((x,y), resample)
# resample filter -> PIL.Image.BILINEAR, PIL.Image.NEAREST (default), PIL.Image.BICUBIC, etc..
# https://pillow.readthedocs.io/en/3.1.x/reference/Image.html#PIL.Image.Image.resize

# Enter the name under which you would like to save the new image
img.save("outputname.png");

并且,它完成了。我尽力将其记录在案,因此很明显。

我希望这可能对那里的人有帮助!

I will also add a version of the resize that keeps the aspect ratio fixed. In this case, it will adjust the height to match the width of the new image, based on the initial aspect ratio, asp_rat, which is float (!). But, to adjust the width to the height, instead, you just need to comment one line and uncomment the other in the else loop. You will see, where.

You do not need the semicolons (;), I keep them just to remind myself of syntax of languages I use more often.

from PIL import Image

img_path = "filename.png";
img = Image.open(img_path);     # puts our image to the buffer of the PIL.Image object

width, height = img.size;
asp_rat = width/height;

# Enter new width (in pixels)
new_width = 50;

# Enter new height (in pixels)
new_height = 54;

new_rat = new_width/new_height;

if (new_rat == asp_rat):
    img = img.resize((new_width, new_height), Image.ANTIALIAS); 

# adjusts the height to match the width
# NOTE: if you want to adjust the width to the height, instead -> 
# uncomment the second line (new_width) and comment the first one (new_height)
else:
    new_height = round(new_width / asp_rat);
    #new_width = round(new_height * asp_rat);
    img = img.resize((new_width, new_height), Image.ANTIALIAS);

# usage: resize((x,y), resample)
# resample filter -> PIL.Image.BILINEAR, PIL.Image.NEAREST (default), PIL.Image.BICUBIC, etc..
# https://pillow.readthedocs.io/en/3.1.x/reference/Image.html#PIL.Image.Image.resize

# Enter the name under which you would like to save the new image
img.save("outputname.png");

And, it is done. I tried to document it as much as I can, so it is clear.

I hope it might be helpful to someone out there!


回答 16

打开你的图片文件

from PIL import Image
im = Image.open("image.png")

使用PIL Image.resize(size,resample = 0)方法,在其中用图像的(宽度,高度)替换大小为2元组。

这将以原始尺寸显示图像:

display(im.resize((int(im.size[0]),int(im.size[1])), 0) )

这将以1/2尺寸显示图像:

display(im.resize((int(im.size[0]/2),int(im.size[1]/2)), 0) )

这将以1/3的大小显示图像:

display(im.resize((int(im.size[0]/3),int(im.size[1]/3)), 0) )

这将以1/4的大小显示图像:

display(im.resize((int(im.size[0]/4),int(im.size[1]/4)), 0) )

Open your image file

from PIL import Image
im = Image.open("image.png")

Use PIL Image.resize(size, resample=0) method, where you substitute (width, height) of your image for the size 2-tuple.

This will display your image at original size:

display(im.resize((int(im.size[0]),int(im.size[1])), 0) )

This will display your image at 1/2 the size:

display(im.resize((int(im.size[0]/2),int(im.size[1]/2)), 0) )

This will display your image at 1/3 the size:

display(im.resize((int(im.size[0]/3),int(im.size[1]/3)), 0) )

This will display your image at 1/4 the size:

display(im.resize((int(im.size[0]/4),int(im.size[1]/4)), 0) )

etc etc


回答 17

from PIL import Image
from resizeimage import resizeimage

def resize_file(in_file, out_file, size):
    with open(in_file) as fd:
        image = resizeimage.resize_thumbnail(Image.open(fd), size)
    image.save(out_file)
    image.close()

resize_file('foo.tif', 'foo_small.jpg', (256, 256))
from PIL import Image
from resizeimage import resizeimage

def resize_file(in_file, out_file, size):
    with open(in_file) as fd:
        image = resizeimage.resize_thumbnail(Image.open(fd), size)
    image.save(out_file)
    image.close()

resize_file('foo.tif', 'foo_small.jpg', (256, 256))

回答 18

您可以通过以下代码调整图片大小:

From PIL import Image
img=Image.open('Filename.jpg') # paste image in python folder
print(img.size())
new_img=img.resize((400,400))
new_img.save('new_filename.jpg')

You can resize image by below code:

From PIL import Image
img=Image.open('Filename.jpg') # paste image in python folder
print(img.size())
new_img=img.resize((400,400))
new_img.save('new_filename.jpg')