标签归档:python优化

Python 小坑之字符串驻留

本文整理了许多字符串驻留的坑,部分整合自wtfpython英文版,并增加了大量的后续说明。

# example1:
>>> a = "wtf"
>>> b = "wtf"
>>> a is b
True

# example2:
>>> a = "wtf!"
>>> b = "wtf!"
>>> a is b
False

# example3:
>>> a, b = "wtf!", "wtf!"
>>> a is b 
True # 3.7 版本返回结果为 False. 
# example4:
>>> 'a' * 20 is 'aaaaaaaaaaaaaaaaaaaa'
True
>>> 'a' * 21 is 'aaaaaaaaaaaaaaaaaaaaa'
False # 3.7 版本返回结果为 True  

字符串的这些问题,像是在和你说 1 != 1 一样坑爹。

究其原因,其实是CPython在编译的时候会自动进行优化,在某些情况下它会尝试使用已经存在的不可变对象,而不是创建一个新的对象,而恰好,字符串就是不可变对象。这种使用已存在的不可变对象的行为被称为“驻留 ” 。

驻留的原本设计意图是用于节省内存的,但是确实有时候会坑到程序员。怎样判断自己的字符串会否被驻留呢?请看这份代码:
https://github.com/python/cpython/blob/3.6/Objects/codeobject.c#L19

简单地来讲:

1.所有长度为0和1的字符串都会被驻留

2.字符串在编译时被实现的会被驻留(如’wtf’会被驻留,但是 ”.join([‘w’, ‘t’, ‘f’]) 不会)

3.字符串中只包含ASCII下的字母、数字和下划线时会被驻留. 所以’wtf!’由于包含!不会被驻留。

我们的example1中,由于发生了驻留,所以a和b是同一个字符串对象。而example2中,由于没有发生字符串驻留,a=”wtf!”和b=”wtf!”实际上使用的不是同一个字符串对象,你可以使用id获得对象的唯一标志,你会发现它们的不同:

a和b都为wtf!时:

>>> a = "wtf!"
>>> b = "wtf!"
>>> a is b
False
>>> a == b
True
>>> id(a)
2272774097864
>>> id(b)
2272774097024  

再来看看没有发生驻留时的情况,a和b都为wtf时:

# a和b都为wtf
>>> a = "wtf"
>>> b = "wtf"
>>> a is b
True
>>> a == b
True
>>> id(a)
2272774096744
>>> id(b)
2272774096744 

明白了吧?如果你想从结果识别对象是否发生驻留,关键就看对象的唯一标志有没有被改变。

不过,如example3所示,当你在同一行中将a和b都设置为 wtf! 的时候,Python解释器会创建一个新的对象,然后同时引用第二个变量,这时候它两的唯一标志id就是一样的。(example3仅适用于python3.7以下,后面被改了)。

example4中,发生了常量折叠,这其实也是一种优化技术。编译时表达式 ‘a’*20 会被替换成 ‘aaaaaaaaaaaaaaaaaaaa’ (不要数了,20个),不过只有长度小于20的字符串才会发生常量替换,这就是为什么 ‘a’*21并不等于 ‘aaaaaaaaaaaaaaaaaaaaa’ (不要数了,21个) 。

好,感谢大家的阅读,今天的…..等等,你以为这就结束了吗?还有呢:

>>> a = 10
>>> b = 10
>>> a is b
True
>>> a = 256
>>> b = 256
>>> a is b
True
>>> a = 257
>>> b = 257
>>> a is b
False 

这又是为啥啊?请注意,Python中,对于整数对象,如果其值处于[-5,256]的闭区间内,则值相同的对象是同一个对象,否则为不同对象。我知道你想问,别问,问就是源码本身就这么写的(其实主要还是从性能方面考虑,-5到256这段数值被经常使用,因此干脆设为同一个对象重复使用,避免分配空间—赋予类别—赋予初始值等一系列操作)。

我们的文章到此就结束啦,如果你希望我们今天的Python 教程,请持续关注我们,如果对你有帮助,麻烦在下面点一个赞/在看哦有任何问题都可以在下方留言区留言,我们都会耐心解答的!


​Python实用宝典 (pythondict.com)
不只是一个宝典
欢迎关注公众号:Python实用宝典

Python减少字典对象占用的七成内存

程序执行过程中,如果RAM中有大量的对象在运行,就可能会出现内存问题,特别是在对可用内存总量有限的情况下。

下面是一些减少字典对象内存大小的方法,这些方法可以显著减少对象所需的RAM大小。

字典

在Python里用字典来表示结构信息是非常方便的:

>>> ob = {'x':1, 'y':2, 'z':3}
>>> x = ob['x']
>>> ob['y'] = y

但我们来看看它的内存消耗:

>>> print(sys.getsizeof(ob))
240

这个数额看起来好像挺小,但是当你想要创造许多这样的变量时就积小成多了:

对象数目内存大小
1 000 000240 Mb
10 000 0002.40 Gb
100 000 00024 Gb

解决方案

用类实例来代替字典:

class Point:
    def __init__(self, x, y, z):
        self.x = x
        self.y = y
        self.z = z

>>> ob = Point(1,2,3)
>>> x = ob.x
>>> ob.y = y

类实例各个部分的内存大小:

FieldSize (bytes)
PyGC_Head24
PyObject_HEAD16
__weakref__8
__dict__8
TOTAL:56

如果你不是很了解类和实例,可以看廖雪峰的这篇文章。这里的__weakref__是对这个对象的弱引用列表的引用,而__dict__是对类实例字典的引用,它包含实例属性的值。从Python 3.3开始, 类的所有实例用共享空间存储字典的keys. 这减少了内存中实例的大小:

>>> print(sys.getsizeof(ob), sys.getsizeof(ob.__dict__)) 
56 112

56+112=168 < 240. 因此,大量的类实例占用的内存比普通字典(dict)要少:

实例数目大小
1 000 000168 Mb
10 000 0001.68 Gb
100 000 00016.8 Gb

字典占实例大小的百分比为112/168=67%, 我们还是可以看出,实例中字典的大小严重影响了RAM中实例的大小。

带__slots__的类实例

通过消除__dict__和weakref__,可以显著减少RAM中的类实例的大小。用__slots__是有可能做到的:

class Point:
    __slots__ = 'x', 'y', 'z'

    def __init__(self, x, y, z):
        self.x = x
        self.y = y
        self.z = z

>>> ob = Point(1,2,3)
>>> print(sys.getsizeof(ob))
64

RAM中的对象明显变小:

FieldSize (bytes)
PyGC_Head24
PyObject_HEAD16
x8
y8
z8
TOTAL:64

今日重点:在类定义中使用__slots__会显著减少大量实例的内存占用

实例数目大小
1 000 00064 Mb
10 000 000640 Mb
100 000 0006.4 Gb

目前,这是大幅度减少RAM中类实例的内存占用的主要方法。相比于单纯用字典,减少了(240-64)/240=73%的内存占用。

文章到此就结束啦,如果你喜欢今天的Python 教程,请持续关注Python实用宝典,如果对你有帮助,麻烦在下面点一个赞/在看哦有任何问题都可以在下方留言区留言,我们会耐心解答的!

​Python实用宝典 (pythondict.com)
不只是一个宝典
欢迎关注公众号:Python实用宝典

让python运行地超快的10个方法

大部门人使用python是因为它非常方便,而不是因为它速度快。过多的第三方使得python相比于Java和C的性能差距较大。但也是可以理解的,因为在大部分情况下,开发速度优先于执行速度。

但也不要过于担心python的速度,这并不一定是一个非此即彼的命题。经过适当优化,Python应用程序可以以惊人的速度运行——也许还不能达到Java或C语言的速度,但是对于Web应用程序、数据分析、管理和自动化工具以及大多数其他用途来说,速度已经足够快了。快到你可能会忘记了你是在用应用程序性能换取开发人员的生产力。

优化Python性能不能单从一个角度上看。而是应用所有可用的优化方法,并选择最适合当前场景的多种方法的集合。(Dropbox的员工有一个最令人瞠目的例子,展示了python优化的强大功能,点击链接查看。)

在本文中,我将简单讲述许多常见的python优化方法。有些是临时措施,只需要简单地将一项转换为另一项(例如更换Python解释器),但是那些带来最大收益的方法将需要更详细的工作。

1. 算速度、算速度、算速度!

如果你不能够找出速度慢的原因所在,你就不能确定你的python应用程序为什么运行地不够理想

计算的方法有很多,你可以尝试python内置的 cProfile模块 进行简单的计算分析,如果需要更高的精度(计算每行语句运行时间),可以使用 line_profiler 第三方工具。通常而言,从计算程序的函数运行时间进行分析就能够给你提供改进方案,所以推荐使用 profilehooks 第三方,它能计算单个函数的运行时间。

你可能需要更多的挖掘才能发现为什么你的程序某个地方这么慢、怎么修复它。重点在于缩小你的排查范围,逐渐细化到某条语句上。

2.缓存需要重复使用的数据

当你可以把需要计算出来的数据保存下来的时候,千万不要重复上千次去计算它。如果你有一个经常需要使用的函数,而且返回的是可预测的结果,Python已经给你提供了一个选项,能将其缓存到内存中。后续的函数调用如果是一样的,将立即返回结果。

有许多方法都可以做到,比如说:使用python的一个本地:functools,拥有一个装饰器,叫@functools.lru_cache,它能够缓存函数最近的N个调用,当缓存的值在特定时间内保持不变的时候这个非常好用,比如说列出最近一天使用的物品。

3.将数学计算重构为NumPy

如果你的Python程序中有基于矩阵或数组的数学运算,并且希望更高效地对它们进行计算,那么你就应该使用NumPy,因为它通过使用C来完成繁重的工作,比原生python解释器能更快得处理数组,而且能比Python内置数据结构更有效地存储数字数据。

NumPy还可以极大地加速相对普通的数学运算。该包为许多常见的Python数学操作(如min和max)提供了替换,这些操作的速度比原始Python快很多倍。

NumPy的另一个优点是对大型对象(比如包含数百万项的列表)能更有效地使用内存。一般来说,如果用传统的Python表示类似于NumPy中的大型对象,那么它们将占用大约四分之一的内存。

重写Python算法以使用NumPy需要做一些工作,因为需要使用NumPy的语法重新声明数组对象。但是NumPy在实际的数学操作中使用Python现有的习惯用法(+、-等等),所以切换到NumPy并不会让人太迷惑。

4.使用C

NumPy使用C编写的是一种很好的方法。如果现有的C能够满足你的需求,那么Python及其生态系统将提供几个选项来连接到该库并利用其提高速度。

最常用的方法是Python的ctypes。因为ctypes与其他Python应用程序广泛兼容,所以它是最好的起点,但也并不是唯一的,CFFI项目为C. Cython提供了一个更优雅的接口(参见下面第五点),也可以用来包装外部,代价是你必须学习Cython的标记方法。

5.转换为Cython

如果你非常追求速度,应该用C而不是python,但是对于我这种有python依赖症的人来说,对C天生就有种畏惧。现在有一个很好的解决办法出来了。

Cython允许Python用户方便地访问C的速度。现有的Python代码可以逐步转换为C :首先通过Cython将所述代码编译为C,然后通过添加类型注释以获得更快的速度。

不过,Cython不能变魔术。按原样转换为Cython的代码通常运行速度通常不会加快超过15%到50%,因为该级别的大多数优化都集中在减少Python解释器的开销上。只有在为Cython模块提供类型注释时才允许将相关代码转换为纯C,这时候的速度提升才最大。

6.使用多线程

由于全局解释器锁(GIL)的存在,Python规定一次只执行一个线程,以避免在使用多个线程时出现状态问题。它的存在有充分的理由,但依然很讨厌

随着时间的推移,GIL的效率显著提高(这是为什么你应该用python3的其中一个原因),但是核心问题仍然存在。为了解决这个问题,Python提供了多处理模块(multiprocessing)来在单独的内核上运行Python解释器的多个进程。状态可以通过共享内存或服务器进程共享,数据可以通过队列或管道在进程实例之间传递。

您仍然必须手动管理进程之间的状态。此外,启动多个Python实例并在它们之间传递对象也会涉及不少开销。尽管如此,多处理还是很有用的。另外,使用了C的Python模块和包(如NumPy)也是完全避免GIL的。这也是推荐它们提高速度的另一个原因。

7.知道你的正在干嘛

简单地输入import xyz是多么方便啊!但是你知道,第三方库虽然可以改变应用程序的性能,但并不总是向好的方向发展。

有时,你加了某个模块的时候,应用程序反而变慢了,这就是来自特定的模块构成瓶颈。同样,仔细计算运行时间也会有所帮助,有时则不那么明显。示例:Pyglet是一个用于创建窗口图形化应用程序的,它自动启用调试模式,这将极大地影响性能,直到显式禁用为止。除非阅读文档,否则你可能永远不会意识到这一点。多读书,多了解情况。

8.意识到平台间的速度差异

Python的运行是跨平台的,但这并不意味着每个操作系统(Windows、Linux、OS X)的特性都可以在Python下抽象出来。大多数情况下,你需要了解平台的细节,比如路径命名约定等等。

但在性能方面,理解平台的差异也很重要。例如,有些python脚本需要使用Windows的api去访问一些特定的应用,这些应用也可能会减慢运行速度。

9.使用pypy运行程序

CPython是Python最常用的优化方案,因为它优先考虑兼容性而不是原始速度。对于那些想把速度放在首位的程序员来说,PyPy是一个Python更好的方案,它配备了一个JIT编译器来加速代码的执行(编译为C代码)。

因为PyPy被设计为CPython的一个临时替代品,所以它是获得快速性能提升的最简单方法之一。大多数Python应用程序将完全按原样运行在PyPy上。然而,充分利用PyPy可能需要不断地测试。你将会发现,长时间运行的应用程序更有可能从PyPy中获得了最大的性能收益,因为编译器会随着时间分析执行情况。对于运行和退出的简短脚本,最好使用CPython,因为性能的提高不足以克服JIT的开销

10.升级到python3

如果你用的是python2。而且没有压倒一切的理由(比如一个不兼容的模块)坚持使用它,你应该跳到python3。

Python 3中还有许多Python 2.x中没有的构造和优化。例如,Python 3.5使异步变得不那么棘手,asyncawait关键字成为语言语法的一部分。Python 3.2对全局解释器锁进行了重大升级,显著改进了Python处理多线程的方式。

以上就是全部十点的改进方案啦,尽管使用了这些方法可能运行速度还是无法超过C和Java,但是代码跑得快不快,不取决于语言,而是取决于人,况且Python本身不必是最快的,只要足够快就行。

如果你希望我们今天的Python 教程,请持续关注我们,如果对你有帮助,麻烦在下面点一个赞/在看哦有任何问题都可以在下方留言区留言,我们都会耐心解答的!


​Python实用宝典 (pythondict.com)
不只是一个宝典
欢迎关注公众号:Python实用宝典