标签归档:解决方案

Asciinema – 终端日志记录神器,机器学习开发者的福音

我们在做机器学习/深度学习开发的时候,经常会产生如下所示的大量日志:

这些日志如果不保存,转瞬即逝,当我们想要回去翻看某一轮训练日志的时候,会很遗憾的发现找不到了。

现在有了这个 Asciinema 这个神器,我们不仅能找到当时的终端日志导出,还能够“重播日志”并“分享日志”。非常牛逼:

Asciinema 是使用Python开发的工具,请按下面的流程安装并使用。

1.准备

开始之前,你要确保Python和pip已经成功安装在电脑上,如果没有,请访问这篇文章:超详细Python安装指南 进行安装。

(可选1) 如果你用Python的目的是数据分析,可以直接安装Anaconda:Python数据分析与挖掘好帮手—Anaconda,它内置了Python和pip.

(可选2) 此外,推荐大家用VSCode编辑器来编写小型Python项目:Python 编程的最好搭档—VSCode 详细指南

Windows环境下打开Cmd(开始—运行—CMD),苹果系统环境下请打开Terminal(command+空格输入Terminal),输入命令安装依赖:

pip install asciinema

2.Asciinema 使用方法

终端输入如下命令,记录你的第一个终端日志:

asciinema rec first.cast

输入完成后会显示如下的提示:

(gs3_9) zjr@sgd-linux-1:~/cnn_test$ asciinema rec first.cast
  
asciinema: recording asciicast to first.cast
asciinema: press <ctrl-d> or type "exit" when you're done

意思就是日志会被保存在当前文件夹下的first.cast,如果你想结束录制,按 Ctrl + D 即可。

记录完毕后,以双倍速度重播该日志:

asciinema play -s 2 first.cast

或以正常速度但空闲时间限制为 2 秒:

asciinema play -i 2 first.cast

你也可以在启动终端日志录制时传递 -i 2 asciinema rec,将其永久设置在录制中:

asciinema rec first.cast -i 2

空闲时间的限制使录制更有趣。试试吧。

如果你想在网络上观看和分享,请上传:

asciinema upload first.cast

这个命令会将日志记录上传到 asciinema.org,此外,它会打印一个秘密链接,你可以使用该链接在网络浏览器中观看你录制的终端日志:

你可以通过省略文件名一步录制和上传终端的日志:

asciinema rec

录制完成后,系统会要求你确认上传。未经你的同意,不会向任何地方发送任何内容。

3.播放日志

查看日志有四种方式,最普通的是通过本地文件进行终端重播:

asciinema play /path/to/asciicast.cast

以下键盘快捷键可用:

  • Space– 暂停,
  • .– 按帧步进(暂停时),
  • Ctrl+C– 退出

第二种方式是通过url播放:

asciinema play https://asciinema.org/a/22124.cast
asciinema play http://example.com/demo.cast

这个方式需要你的日志已经上传到asciinema.org中。

第三种方式是通过你自己生成的html页面访问(需要<link rel="alternate" type="application/x-asciicast" href="/my/ascii.cast">在页面的 HTML 中):

asciinema play http://your_html_path/post.html

第四种方式是通过标准输入输出播放:

cat /path/to/asciicast.cast | asciinema play -
ssh user@host cat asciicast.cast | asciinema play -

可用选项:

  • -i, --idle-time-limit=<sec>– 将重播的终端空闲不动时间闲置为最大<sec>秒数
  • -s, --speed=<factor>– 播放速度

4.导出日志

导出终端日志到文本文件非常简单:

asciinema cat existing.cast > terminal_output.txt

所有的终端日志都会被导出到 terminal_output.txt 中,非常方便好用。

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!

给作者打赏,选择打赏金额
¥1¥5¥10¥20¥50¥100¥200 自定义

​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典

Isort 自动整理”import”的超实用工具详细教程

isort 是一个Python的实用程序/库,它会按字母顺序对导入(import)的库进行排序,并自动分组。它提供多种使用方式,包括命令行、Python调用等。

它基于Python 3.6+实现,但也支持格式化Python 2代码。

在使用 isort 格式化你的 import 之前,你的代码可能是长这样的:

from my_lib import Object
import os
from my_lib import Object3
from my_lib import Object2
import sys
from third_party import lib15, lib1, lib2, lib3, lib4, lib5, lib6, lib7, lib8, lib9, lib10, lib11, lib12, lib13, lib14
import sys
from __future__ import absolute_import
from third_party import lib3
print("Hey")
print("yo")

使用 isort 格式化后的代码是这样的:

from __future__ import absolute_import import os
import sys from third_party import (lib1, lib2, lib3, lib4, lib5, lib6, lib7, lib8,
                        lib9, lib10, lib11, lib12, lib13, lib14, lib15)

from my_lib import Object, Object2, Object3 
print("Hey")
print("yo")

​杂乱无章的格式瞬间变得井然有序,可见这是一款多么优秀的整理工具,下面就来介绍这个工具的安装及使用过程,及进阶用法。

1.准备

开始之前,你要确保Python和pip已经成功安装在电脑上,如果没有,请访问这篇文章:超详细Python安装指南 进行安装。

(可选1) 如果你用Python的目的是数据分析,可以直接安装Anaconda:Python数据分析与挖掘好帮手—Anaconda,它内置了Python和pip.

(可选2) 此外,推荐大家用VSCode编辑器来编写小型Python项目:Python 编程的最好搭档—VSCode 详细指南

Windows环境下打开Cmd(开始—运行—CMD),苹果系统环境下请打开Terminal(command+空格输入Terminal),输入命令安装依赖:

pip install isort

如果你需要让他支持对 requirements.txt 的整理,请这样安装:

pip install isort[requirements_deprecated_finder]

2.使用 isort 整理你的python引用

isort 有2种使用方法,一种是从命令行直接针对py文件进行整理、另一种是在Python内导入 isort 进行整理。

命令行整理

要在特定文件上运行 isort,请在命令行执行以下操作:

isort mypythonfile.py mypythonfile2.py
# 或
python -m isort mypythonfile.py mypythonfile2.py

要对本文件夹递归进行isort整理,请执行以下操作:

isort .
# 或
python -m isort .

要查看更改建议的而不直接应用它们,请执行以下操作:

isort mypythonfile.py --diff

如果你要对项目自动运行isort,但是希望仅在未引入语法错误的情况下应用更改:

isort --atomic .

(注意:这在默认情况下是禁用的,因为它阻止了 isort 去整理不同版本的Python代码。)

从Python内部

import isort
isort.file("pythonfile.py")

或者:

import isort
sorted_code = isort.code("import b\nimport a\n")

3. 智能平衡格式化

从 isort 3.1.0 开始,添加了对平衡多行导入的支持。启用此选项后,isort 将动态地将导入长度更改为生成最平衡网格的长度,同时保持低于定义的最大导入长度。

开启了平衡导入的格式化:

from __future__ import (absolute_import, division,
                        print_function, unicode_literals)

未开启平衡的格式化:

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

要启用此设置, 在你的配置设置 balanced_wrapping=True 或 通过命令行添加 -e 参数执行整理。

4.跳过某个import

要使 isort 忽略单个 import,只需在包含文本的导入行的末尾添加注释 isort:skip,如下:

import module  # isort:skip

或者:

from xyz import (abc,  # isort:skip
                 yo,
                 hey)

要使 isort 跳过整个文件,只需添加 isort:skip_file 到文件的开头注释中:

""" 
my_module.py
Best module ever

isort:skip_file
"""

import b
import a

这个工具还是相当方便的,尤其是针对一些杂乱无章、多年沉淀下来的项目代码的 import 进行整理的时候,它会变得非常香。有需要的小伙伴可以赶快试一下。

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!

给作者打赏,选择打赏金额
¥1¥5¥10¥20¥50¥100¥200 自定义

​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典

Python 想了解EventLoop?这篇文章就够了

原文来自 python-parallel-programming-cookbook-cn

Python的Asyncio模块提供了管理事件、协程、任务和线程的方法,以及编写并发代码的原语。此模块的主要组件和概念包括:

  • 事件循环: 在Asyncio模块中,每一个进程都有一个事件循环。
  • 协程: 这是子程序的泛化概念。协程可以在执行期间暂停,这样就可以等待外部的处理(例如IO)完成之后,从之前暂停的地方恢复执行。
  • Futures: 定义了 Future 对象,和 concurrent.futures 模块一样,表示尚未完成的计算。
  • Tasks: 这是Asyncio的子类,用于封装和管理并行模式下的协程。

本节中重点讨论事件,事实上,异步编程的上下文中,事件无比重要。因为事件的本质就是异步。

1. 什么是事件循环

在计算系统中,可以产生事件的实体叫做事件源,能处理事件的实体叫做事件处理者。此外,还有一些第三方实体叫做事件循环。它的作用是管理所有的事件,在整个程序运行过程中不断循环执行,追踪事件发生的顺序将它们放到队列中,当主线程空闲的时候,调用相应的事件处理者处理事件。最后,我们可以通过下面的伪代码来理解事件循环::

while(1) {
  events = getEvents();
  for (e in events)
    processEvent(e);
}

所有的事件都在 while 循环中捕捉,然后经过事件处理者处理。事件处理的部分是系统唯一活跃的部分,当一个事件处理完成,流程继续处理下一个事件。

2. 准备工作

Asyncio提供了一下方法来管理事件循环:

  • loop = get_event_loop(): 得到当前上下文的事件循环。
  • loop.call_later(time_delay, callback, argument): 延后 time_delay 秒再执行 callback 方法。
  • loop.call_soon(callback, argument): 尽可能快调用 callbackcall_soon() 函数结束,主线程回到事件循环之后就会马上调用 callback 。
  • loop.time(): 以float类型返回当前事件循环的内部时间。
  • asyncio.set_event_loop(): 为当前上下文设置事件循环。
  • asyncio.new_event_loop(): 根据此策略创建一个新的事件循环并返回。
  • loop.run_forever(): 在调用 stop() 之前将一直运行。

3. 如何做…

下面的代码中,我们将展示如何使用Asyncio库提供的事件循环创建异步模式的应用。

import asyncio
import datetime
import time

def function_1(end_time, loop):
    print("function_1 called")
    if (loop.time() + 1.0) < end_time:
        loop.call_later(1, function_2, end_time, loop)
    else:
        loop.stop()

def function_2(end_time, loop):
    print("function_2 called ")
    if (loop.time() + 1.0) < end_time:
        loop.call_later(1, function_3, end_time, loop)
    else:
        loop.stop()

def function_3(end_time, loop):
    print("function_3 called")
    if (loop.time() + 1.0) < end_time:
        loop.call_later(1, function_1, end_time, loop)
    else:
        loop.stop()

def function_4(end_time, loop):
    print("function_5 called")
    if (loop.time() + 1.0) < end_time:
        loop.call_later(1, function_4, end_time, loop)
    else:
        loop.stop()

loop = asyncio.get_event_loop()

end_loop = loop.time() + 9.0
loop.call_soon(function_1, end_loop, loop)
# loop.call_soon(function_4, end_loop, loop)
loop.run_forever()
loop.close()

运行结果如下::

python3 event.py
function_1 called
function_2 called
function_3 called
function_1 called
function_2 called
function_3 called
function_1 called
function_2 called
function_3 called

在这个例子中,我们定义了三个异步的任务,相继执行,入下图所示的顺序。

首先,我们要得到这个事件循环::

loop = asyncio.get_event_loop()

然后我们通过 call_soon 方法调用了 function_1() 函数。

end_loop = loop.time() + 9.0
loop.call_soon(function_1, end_loop, loop)

让我们来看一下 function_1() 的定义::

def function_1(end_time, loop):
    print("function_1 called")
    if (loop.time() + 1.0) < end_time:
        loop.call_later(1, function_2, end_time, loop)
    else:
        loop.stop()

这个函数通过以下参数定义了应用的异步行为:

  • end_time: 定义了 function_1() 可以运行的最长时间,并通过 call_later 方法传入到 function_2() 中作为参数
  • loop: 之前通过 get_event_loop() 方法得到的事件循环

function_1() 的任务非常简单,只是打印出函数名字。当然,里面也可以写非常复杂的操作。

print("function_1 called")

任务执行结束之后,它将会比较 loop.time() +1s和设定的运行时间,如果没有超过,使用 call_later 在1秒之后执行 function_2() 。

if (loop.time() + 1.0) < end_time:
    loop.call_later(1, function_2, end_time, loop)
else:
    loop.stop()

function_2() 和 function_3() 的作用类似。

如果运行的时间超过了设定,事件循环终止。

loop.run_forever()
loop.close()

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!

给作者打赏,选择打赏金额
¥1¥5¥10¥20¥50¥100¥200 自定义

​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典

Python 简化函数调用的3种技巧

假设有一个函数,这个函数需要接收4个参数,并返回这4个参数的和:

def sum_four(a, b, c, d):
    return a + b + c + d

如果需要固定最后前三个参数,仅改变最后一个参数的值,这时候可能需要这么调用:

>>> a, b, c = 1, 2, 3

>>> sum_four(a=a, b=b, c=c, d=1)
7

>>> sum_four(a=a, b=b, c=c, d=2)
8

>>> sum_four(a=a, b=b, c=c, d=3)
9

>>> sum_four(a=a, b=b, c=c, d=4)
10

这样写实在是太丑了,如果用 Map 函数,是否能简化代码?

答案是肯定的,但是Map函数只能接受单一元素,如果你强行使用的话,它会报这样的错:

>>> list(map(sum_four, [(1, 2, 3, 4)]))
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: sum_four() missing 3 required positional arguments: 'b', 'c', and 'd'

怎么解决?

方案1: itertools.starmap

我们可以使用 itertools 的函数 starmap 替换Map.

它与Map不同,允许接受一个元组作为传入sum_four的参数。

>>> import itertools
>>> list(itertools.starmap(sum_four, [(1, 2, 3, 4)]))
[10]

非常棒,这样的话,上述问题就可以使用starmap函数解决:

>>> import itertools

>>> ds = [1, 2, 3, 4]

>>> items = ((a, b, c, d) for d in ds)

>>> list(items)
 [(1, 2, 3, 1), (1, 2, 3, 2), (1, 2, 3, 3), (1, 2, 3, 4)]

>>> list(itertools.starmap(sum_four, items))
 [7, 8, 9, 10]

请注意 items 是一个生成器,这是为了避免 items 过大导致内存消耗量过大。平时开发的时候注意这些细节,能够使你和普通的开发者拉开差距。

方案2: functools.partial

第二种解决方案是使用 partial 函数固定前三个参数。

根据文档,partial 将“冻结”函数的参数的某些部分,从而生成简化版的函数。

因此上述问题的解决方案就是:

>>> import functools
>>> partial_sum_four = functools.partial(sum_four, a, b, c)
>>> partial_sum_four(3)
9
>>> # 这样就可以使用map函数了:
>>> list(map(partial_sum_four, ds))
[7, 8, 9, 10]

方案3: itertools.repeat()

事实上,Map 函数是允许传递可迭代参数的,但是有一个有趣的特点,他会用每个可迭代对象里的项作为传入函数的不同参数。这样说可能太过于抽象了,来看看实际的例子:

>>> list(map(sum_four, [1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [1,2,3,4]))
 [7, 8, 9, 10]

明白了吧,每次都使用了不同数组中对应下标的项传入函数进行计算。

这样,我们可以使用这个特点进行优化。

itertools.repeat() 函数能够根据参数产生一个迭代器,该迭代器一次又一次返回对象。不指定times参数,它将无限期运行。

而 Map 函数会在最短的可迭代对象被迭代完后,就会自动停止运行。

结合这两个特点,上述问题的解决方案就出来了:

>>> import itertools
>>> list(map(sum_four, itertools.repeat(a), itertools.repeat(b), itertools.repeat(c), ds))
 [7, 8, 9, 10]

这招还是非常巧妙的。缺点是能读懂的人不多。不过没关系,计算机世界中某些东西知道就好,你并不一定需要去使用它。

比如本文中的这几种解决方案,日常生活工作中一般用不到,所以你不需要死记硬背,但你需要知道【有这样的问题】和【有这些解决方案】,万一遇到了相似的场景,你就可以回忆起这篇文章并快速找到解决的方法。

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!

给作者打赏,选择打赏金额
¥1¥5¥10¥20¥50¥100¥200 自定义

​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典

Python 能用来干嘛?

Python 能用来干嘛?经常能遇到小伙伴在知乎上问这个问题,而每个这样的问题我都想回答,最终落得个重复答案被删除的下场。

我看到许多人只是千篇一律地回答:Web开发、自动化运维、网络爬虫、数据分析…等等。个人觉得这样的回答太过于抽象,也太敷衍了,没有抓到问题的关键点。

我今年写了许多有趣的小玩意儿,从web开发数据分析,从数据分析到量化投资,甚至还送特朗普上了太阳。但实际上,这些文章都围绕着一个主题:Python 是一个用来解决问题的好工具

学Python,学的可不止是编程语言,更重要的是学会使用这个解决问题的好工具,下面就是一系列解决问题的Python 实战教程。希望能帮你养成用Python解决问题的思维。

数据相关:

1.Python 多项式预测2019年天猫销售额

2.Python 百度指数突变值检测

3.Python 制作音乐高潮副歌提取器

4.Python 来算算一线城市的二手房价格指数相关性

5.Python 20行代码检测人脸是否佩戴口罩

6.比PS还好用!Python 20行代码批量抠图

7.Python 识别文本情感就这么简单

8.Python 计算 瑞幸和星巴克 谁的门店最多

9.Python 短文本自动识别个体是否有自杀倾向

10.如何基于Paddle训练一个98%准确率的抑郁文本预测模型

11.Python 机器学习预测泰坦尼克号存活概率

12.Python 一键吸猫!找出磁盘里所有猫照

13.你的10W块放哪里能赚最多钱?

14.Python 自动提取电影中所有人脸

可视化相关:

1.Python 绘制属于你的世界地图

2.Python 快速绘制画出漂亮的系统架构图

3.7行代码 Python热力图可视化分析缺失数据处理

4.Python 人口出生率数据预测及可视化

5.Python 提取音乐频谱并可视化

6.AO3被封的冤不冤?可视化数据分析《下坠》

7.Python 流程图 — 一键转化代码为流程图

8.Python 批量转化彩色图片为黑白图片

9.Blender, 用Python绘制宇宙飞船的3D建模软件

游戏相关:

1.庆祝胖五发射成功, 来用Python发射火箭!

2.Python 精美俄罗斯方块开源项目

3.Python 小游戏—加农炮送特朗普上太阳

4.快来用Python写一个简单版《我的世界》

树莓派与智能家居:

1.Python 树莓派智能音箱语音控制电脑开关机

2.Python 树莓派语音控制普通风扇实现教程

3.python 树莓派语音控制普通台灯教程

4.python 树莓派人脸识别自动开机教程

量化投资

1.Python 量化投资 原来这么简单(1) — Backtrader 教程

2.Python 量化投资原来这么简单(2) —MACD策略

3.Python 量化投资原来这么简单(3) —A股回测MACD策略

4.Python 量化投资原来这么简单(4) —KDJ 策略

5.Python 量化投资原来这么简单(5) — A股回测KDJ 策略

其他

当然,还有一些有趣的Python教程实例,它不只属于简单的一类,我更倾向于称之为工具,包括数据爬虫、自动化、一键格式化代码等等:

1.Python 8行代码模拟鼠标自动删除微信收藏

2.Python 爬取“微博树洞”详细教程

3.Python 超简单爬取新浪微博数据 (高级版)

4.Python 一个超快的公共情报搜集爬虫

5.Python Black一键格式化美化代码(详细配置教程)

等等…更多的文章大家可以在Python实用宝典公众号历史页里查看,也可以到Python实用宝典网站上进行体验更好的阅读:
https://pythondict.com

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!

给作者打赏,选择打赏金额
¥1¥5¥10¥20¥50¥100¥200 自定义

​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典

2020年已到,Python2寿命已止,请迁移

随着2020年的到来,Python 2 也到来寿终正寝的时候。从2020年1月1日起,Python核心团队将不再对Python 2提供任何支持。

1.怎么办?

由于Python3不向前兼容Python2,因此对于有写过Python2,且有正在运行Python2项目的同学来说,是时候将项目迁移到Python3了。

对于正在学习Python的同学来说,不要犹豫,请直接学Python3的教程,如果某个你正在阅读的教程是Python2写的,请立即丢掉。

2.迁移方法

现在已经有许多自动化的工具可以帮你把代码从Python 2迁移到Python 3. 比如说自带的2to3模块:

2to3 的基本调用参数是一个需要转换的文件或目录列表。对于目录,会递归地寻找其中的 Python 源码。

这里有一个 Python 2.x 的源码文件,example.py

def greet(name):
    print "Hello, {0}!".format(name)
print "What's your name?"
name = raw_input()
greet(name)

找到你的Python安装位置,一般2to3会在Tools\scripts文件夹下:C:\Python3X\Tools\scripts\2to3.py,在CMD中输入以下命令即可将Python2代码转化为Python3代码(由于我用的是anaconda,所以位置可能和你们不一样):

F:\Anaconda3\Scripts\2to3.exe example.py

它会显示所有修改,输出效果如下:

 RefactoringTool: Skipping optional fixer: buffer
 RefactoringTool: Skipping optional fixer: idioms
 RefactoringTool: Skipping optional fixer: set_literal
 RefactoringTool: Skipping optional fixer: ws_comma
 RefactoringTool: Refactored example.py
 --- example.py  (original)
 +++ example.py  (refactored)
 @@ -1,5 +1,5 @@
  def greet(name):
 print "Hello, {0}!".format(name)
 -print "What's your name?"
 -name = raw_input()
 print("Hello, {0}!".format(name))
 +print("What's your name?")
 +name = input()
 greet(name)
 RefactoringTool: Files that need to be modified:
 RefactoringTool: example.py 

如果你想写回文件,记得带-w参数:

F:\Anaconda3\Scripts\2to3.exe -w example.py

现在效果如下:

def greet(name):
    print("Hello, {0}!".format(name))
print("What's your name?")
name = input()
greet(name) 

非常方便,一键修改完成。它能转化大部分Python2代码,更详细的使用文档在这里:

https://docs.python.org/zh-cn/3.7/library/2to3.html#

不过2to3.py也不是万能的,有些情况下你只能手动地转换代码,遇到无法用工具迁移的问题,请耐心搜索解决方案

我们的文章到此就结束啦,如果你希望我们今天的Python 教程,请持续关注我们,如果对你有帮助,麻烦在下面点一个赞/在看哦有任何问题都可以在下方留言区留言,我们都会耐心解答的!


​Python实用宝典 (pythondict.com)
不只是一个宝典
欢迎关注公众号:Python实用宝典

Python 警惕伪装成著名软件包的恶意模块

本周早些时候,两个包含恶意代码的Python第三方模块被从官方软件PyPI中删除。这两个恶意软件包通过使用非常相似的名字来迷惑安装者。

它们伪装成dateutiljellyfish软件包 (前者用于处理日期时间,后者用于字符串近似计算等),伪装命名为python-dateutiljeIlyfish,如果安装包的时候并不熟悉这些模块,而且也没有看官方文档,那就非常有可能中招。

看,甚至有人不知道它是冒牌货

安装后, python-dateutil 和 jeIlyfish 与原始的软件包行为完全相同,但是它们会偷偷地将个人数据上传到服务器。但是正常使用的人恐怕无法发现恶意模块的这些行为。

Python通常分为两种,一种是Python运行时自带的标准,还有一种则是托管在PyPI上的第三方程序包,而上传第三方程序包到PyPI时,大部分程序包都不会被审核到。这就导致你进行pip安装的时候,如果不小心输错了单词,就有可能安装到恶意模块。

这引出了一个现在许多开软社区都非常头痛的问题:如何让人们能将自己的代码贡献到通用存储(如PyPI),且不被不怀好意的人利用。

据说,Python软件基金会已经制定了保护PyPI免受滥用的计划,但要全面执行计划需要一些时间。此外,Python软件基金会中负责封装的工作组已经获得了Facebook Research的拨款,用于开发自动检测恶意上传第三方程序包的功能。

尽管如此,这些预防措施离上线还有很远,我们在选择使用第三方模块的时候一定要注意你的命令pip install的是不是那个真的模块,而不是一个冒牌货,这样才能将风险降至最低。

我们的文章到此就结束啦,如果你希望我们今天的Python 教程,请持续关注我们,如果对你有帮助,麻烦在下面点一个赞/在看哦有任何问题都可以在下方留言区留言,我们都会耐心解答的!


​Python实用宝典 (pythondict.com)
不只是一个宝典
欢迎关注公众号:Python实用宝典