问题:如何在Spark中关闭INFO日志记录?
我使用AWS EC2指南安装了Spark,并且可以使用bin/pyspark
脚本正常启动该程序以获取Spark 提示,并且还可以成功执行快速入门Quide。
但是,我无法终生解决如何INFO
在每个命令后停止所有冗长的日志记录。
我在下面的代码(注释掉,设置为OFF)中的几乎所有可能的情况下都尝试了log4j.properties
该conf
文件夹,该文件夹位于我从中以及在每个节点上启动应用程序的文件夹中,没有任何反应。INFO
执行每个语句后,我仍然可以打印日志记录语句。
我对应该如何工作感到非常困惑。
#Set everything to be logged to the console log4j.rootCategory=INFO, console
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n
# Settings to quiet third party logs that are too verbose
log4j.logger.org.eclipse.jetty=WARN
log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=INFO
log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=INFO
这是我使用时的完整类路径SPARK_PRINT_LAUNCH_COMMAND
:
Spark命令:/Library/Java/JavaVirtualMachines/jdk1.8.0_05.jdk/Contents/Home/bin/java -cp:/root/spark-1.0.1-bin-hadoop2/conf:/root/spark-1.0.1 -bin-hadoop2 / conf:/root/spark-1.0.1-bin-hadoop2/lib/spark-assembly-1.0.1-hadoop2.2.0.jar:/root/spark-1.0.1-bin-hadoop2/lib /datanucleus-api-jdo-3.2.1.jar:/root/spark-1.0.1-bin-hadoop2/lib/datanucleus-core-3.2.2.jar:/root/spark-1.0.1-bin-hadoop2 /lib/datanucleus-rdbms-3.2.1.jar -XX:MaxPermSize = 128m -Djava.library.path = -Xms512m -Xmx512m org.apache.spark.deploy.Spark提交spark-shell –class org.apache.spark。代表主
的内容spark-env.sh
:
#!/usr/bin/env bash
# This file is sourced when running various Spark programs.
# Copy it as spark-env.sh and edit that to configure Spark for your site.
# Options read when launching programs locally with
# ./bin/run-example or ./bin/spark-submit
# - HADOOP_CONF_DIR, to point Spark towards Hadoop configuration files
# - SPARK_LOCAL_IP, to set the IP address Spark binds to on this node
# - SPARK_PUBLIC_DNS, to set the public dns name of the driver program
# - SPARK_CLASSPATH=/root/spark-1.0.1-bin-hadoop2/conf/
# Options read by executors and drivers running inside the cluster
# - SPARK_LOCAL_IP, to set the IP address Spark binds to on this node
# - SPARK_PUBLIC_DNS, to set the public DNS name of the driver program
# - SPARK_CLASSPATH, default classpath entries to append
# - SPARK_LOCAL_DIRS, storage directories to use on this node for shuffle and RDD data
# - MESOS_NATIVE_LIBRARY, to point to your libmesos.so if you use Mesos
# Options read in YARN client mode
# - HADOOP_CONF_DIR, to point Spark towards Hadoop configuration files
# - SPARK_EXECUTOR_INSTANCES, Number of workers to start (Default: 2)
# - SPARK_EXECUTOR_CORES, Number of cores for the workers (Default: 1).
# - SPARK_EXECUTOR_MEMORY, Memory per Worker (e.g. 1000M, 2G) (Default: 1G)
# - SPARK_DRIVER_MEMORY, Memory for Master (e.g. 1000M, 2G) (Default: 512 Mb)
# - SPARK_YARN_APP_NAME, The name of your application (Default: Spark)
# - SPARK_YARN_QUEUE, The hadoop queue to use for allocation requests (Default: ‘default’)
# - SPARK_YARN_DIST_FILES, Comma separated list of files to be distributed with the job.
# - SPARK_YARN_DIST_ARCHIVES, Comma separated list of archives to be distributed with the job.
# Options for the daemons used in the standalone deploy mode:
# - SPARK_MASTER_IP, to bind the master to a different IP address or hostname
# - SPARK_MASTER_PORT / SPARK_MASTER_WEBUI_PORT, to use non-default ports for the master
# - SPARK_MASTER_OPTS, to set config properties only for the master (e.g. "-Dx=y")
# - SPARK_WORKER_CORES, to set the number of cores to use on this machine
# - SPARK_WORKER_MEMORY, to set how much total memory workers have to give executors (e.g. 1000m, 2g)
# - SPARK_WORKER_PORT / SPARK_WORKER_WEBUI_PORT, to use non-default ports for the worker
# - SPARK_WORKER_INSTANCES, to set the number of worker processes per node
# - SPARK_WORKER_DIR, to set the working directory of worker processes
# - SPARK_WORKER_OPTS, to set config properties only for the worker (e.g. "-Dx=y")
# - SPARK_HISTORY_OPTS, to set config properties only for the history server (e.g. "-Dx=y")
# - SPARK_DAEMON_JAVA_OPTS, to set config properties for all daemons (e.g. "-Dx=y")
# - SPARK_PUBLIC_DNS, to set the public dns name of the master or workers
export SPARK_SUBMIT_CLASSPATH="$FWDIR/conf"
回答 0
只需在spark目录中执行以下命令:
cp conf/log4j.properties.template conf/log4j.properties
编辑log4j.properties:
# Set everything to be logged to the console
log4j.rootCategory=INFO, console
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n
# Settings to quiet third party logs that are too verbose
log4j.logger.org.eclipse.jetty=WARN
log4j.logger.org.eclipse.jetty.util.component.AbstractLifeCycle=ERROR
log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=INFO
log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=INFO
在第一行替换:
log4j.rootCategory=INFO, console
通过:
log4j.rootCategory=WARN, console
保存并重新启动您的Shell。它适用于OS X上的Spark 1.1.0和Spark 1.5.1。
回答 1
受到pyspark / tests.py的启发
def quiet_logs(sc):
logger = sc._jvm.org.apache.log4j
logger.LogManager.getLogger("org"). setLevel( logger.Level.ERROR )
logger.LogManager.getLogger("akka").setLevel( logger.Level.ERROR )
在创建SparkContext之后立即调用此方法,将测试时记录的stderr行从2647减少到163。但是创建SparkContext本身会记录163,直至
15/08/25 10:14:16 INFO SparkDeploySchedulerBackend: SchedulerBackend is ready for scheduling beginning after reached minRegisteredResourcesRatio: 0.0
而且我还不清楚如何以编程方式进行调整。
回答 2
在Spark 2.0中,您还可以使用setLogLevel为应用程序动态配置它:
from pyspark.sql import SparkSession
spark = SparkSession.builder.\
master('local').\
appName('foo').\
getOrCreate()
spark.sparkContext.setLogLevel('WARN')
在pyspark控制台中,默认spark
会话将已经可用。
回答 3
编辑您的conf / log4j.properties文件,然后更改以下行:
log4j.rootCategory=INFO, console
至
log4j.rootCategory=ERROR, console
另一种方法是:
启动spark-shell并输入以下内容:
import org.apache.log4j.Logger
import org.apache.log4j.Level
Logger.getLogger("org").setLevel(Level.OFF)
Logger.getLogger("akka").setLevel(Level.OFF)
之后,您将看不到任何日志。
回答 4
>>> log4j = sc._jvm.org.apache.log4j
>>> log4j.LogManager.getRootLogger().setLevel(log4j.Level.ERROR)
回答 5
对于PySpark,您还可以使用在脚本中设置日志级别sc.setLogLevel("FATAL")
。从文档:
控制我们的logLevel。这将覆盖所有用户定义的日志设置。有效的日志级别包括:ALL,DEBUG,ERROR,FATAL,INFO,OFF,TRACE,WARN
回答 6
您可以使用setLogLevel
val spark = SparkSession
.builder()
.config("spark.master", "local[1]")
.appName("TestLog")
.getOrCreate()
spark.sparkContext.setLogLevel("WARN")
回答 7
这可能是由于Spark如何计算其类路径。我的直觉是,Hadoop的log4j.properties
文件在类路径中出现在Spark之前,从而阻止您的更改生效。
如果你跑
SPARK_PRINT_LAUNCH_COMMAND=1 bin/spark-shell
然后Spark将打印用于启动Shell的完整类路径;就我而言
Spark Command: /usr/lib/jvm/java/bin/java -cp :::/root/ephemeral-hdfs/conf:/root/spark/conf:/root/spark/lib/spark-assembly-1.0.0-hadoop1.0.4.jar:/root/spark/lib/datanucleus-api-jdo-3.2.1.jar:/root/spark/lib/datanucleus-core-3.2.2.jar:/root/spark/lib/datanucleus-rdbms-3.2.1.jar -XX:MaxPermSize=128m -Djava.library.path=:/root/ephemeral-hdfs/lib/native/ -Xms512m -Xmx512m org.apache.spark.deploy.SparkSubmit spark-shell --class org.apache.spark.repl.Main
在/root/ephemeral-hdfs/conf
类路径的最前面。
我已经发布了一个问题[SPARK-2913],可以在下一发行版中解决此问题(我应该尽快发布一个补丁)。
同时,有两种解决方法:
- 添加
export SPARK_SUBMIT_CLASSPATH="$FWDIR/conf"
到spark-env.sh
。 - 删除(或重命名)
/root/ephemeral-hdfs/conf/log4j.properties
。
回答 8
Spark 1.6.2:
log4j = sc._jvm.org.apache.log4j
log4j.LogManager.getRootLogger().setLevel(log4j.Level.ERROR)
Spark 2.x:
spark.sparkContext.setLogLevel('WARN')
(火花是SparkSession)
或者是旧方法
在Spark Dir中重命名conf/log4j.properties.template
为conf/log4j.properties
。
在中log4j.properties
,更改log4j.rootCategory=INFO, console
为log4j.rootCategory=WARN, console
可用的不同日志级别:
- OFF(最具体,不记录)
- 致命(最具体,数据很少)
- 错误-仅在出现错误的情况下记录
- 警告-仅在出现警告或错误时记录
- INFO(默认)
- 调试-日志详细信息步骤(以及上述所有日志)
- TRACE(最具体,很多数据)
- ALL(最少,所有数据)
回答 9
编程方式
spark.sparkContext.setLogLevel("WARN")
可用选项
ERROR
WARN
INFO
回答 10
我将其用于具有1个主设备和2个从设备以及Spark 1.2.1的Amazon EC2。
# Step 1. Change config file on the master node
nano /root/ephemeral-hdfs/conf/log4j.properties
# Before
hadoop.root.logger=INFO,console
# After
hadoop.root.logger=WARN,console
# Step 2. Replicate this change to slaves
~/spark-ec2/copy-dir /root/ephemeral-hdfs/conf/
回答 11
只需将以下参数添加到您的spark-submit命令中
--conf "spark.driver.extraJavaOptions=-Dlog4jspark.root.logger=WARN,console"
这仅暂时覆盖该作业的系统值。从log4j.properties文件中检查确切的属性名称(此处为log4jspark.root.logger)。
希望这会有所帮助,加油!
回答 12
以下针对scala用户的代码段:
选项1 :
您可以在摘要下方添加文件级
import org.apache.log4j.{Level, Logger}
Logger.getLogger("org").setLevel(Level.WARN)
选项2:
注意:这将适用于所有正在使用spark会话的应用程序。
import org.apache.spark.sql.SparkSession
private[this] implicit val spark = SparkSession.builder().master("local[*]").getOrCreate()
spark.sparkContext.setLogLevel("WARN")
选项3:
注意:此配置应添加到您的log4j.properties中。(可能类似于/etc/spark/conf/log4j.properties(其中有spark安装)或项目文件夹级别的log4j.properties),因为您在以下位置进行更改模块级别。这将适用于所有应用程序。
log4j.rootCategory=ERROR, console
恕我直言,选项1是明智的方法,因为可以在文件级别将其关闭。
回答 13
我这样做的方式是:
在我运行spark-submit
脚本的位置
$ cp /etc/spark/conf/log4j.properties .
$ nano log4j.properties
更改INFO
为所需的日志记录级别,然后运行spark-submit
回答 14
我想继续使用日志记录(Python的日志记录工具),可以尝试拆分应用程序和Spark的配置:
LoggerManager()
logger = logging.getLogger(__name__)
loggerSpark = logging.getLogger('py4j')
loggerSpark.setLevel('WARNING')