问题:Python Pandas:获取列匹配特定值的行的索引

给定一个带有“ BoolCol”列的DataFrame,我们要查找其中“ BoolCol” == True的值的DataFrame索引

我目前有迭代的方式来做,很完美:

for i in range(100,3000):
    if df.iloc[i]['BoolCol']== True:
         print i,df.iloc[i]['BoolCol']

但这不是正确的熊猫方法。经过研究,我目前正在使用以下代码:

df[df['BoolCol'] == True].index.tolist()

这给了我一份索引列表,但是当我通过以下方法检查它们时,它们不匹配:

df.iloc[i]['BoolCol']

结果实际上是错误的!

哪一种是正确的Pandas方法?

Given a DataFrame with a column “BoolCol”, we want to find the indexes of the DataFrame in which the values for “BoolCol” == True

I currently have the iterating way to do it, which works perfectly:

for i in range(100,3000):
    if df.iloc[i]['BoolCol']== True:
         print i,df.iloc[i]['BoolCol']

But this is not the correct panda’s way to do it. After some research, I am currently using this code:

df[df['BoolCol'] == True].index.tolist()

This one gives me a list of indexes, but they dont match, when I check them by doing:

df.iloc[i]['BoolCol']

The result is actually False!!

Which would be the correct Pandas way to do this?


回答 0

df.iloc[i]返回的ithdfi不引用索引标签,i是基于0的索引。

相反,该属性index返回实际的索引标签,而不是数字的行索引:

df.index[df['BoolCol'] == True].tolist()

或等效地,

df.index[df['BoolCol']].tolist()

通过使用具有非默认索引的DataFrame玩,可以很清楚地看到差异,该索引与行的数字位置不相等:

df = pd.DataFrame({'BoolCol': [True, False, False, True, True]},
       index=[10,20,30,40,50])

In [53]: df
Out[53]: 
   BoolCol
10    True
20   False
30   False
40    True
50    True

[5 rows x 1 columns]

In [54]: df.index[df['BoolCol']].tolist()
Out[54]: [10, 40, 50]

如果要使用索引

In [56]: idx = df.index[df['BoolCol']]

In [57]: idx
Out[57]: Int64Index([10, 40, 50], dtype='int64')

那么您可以使用loc代替来选择行iloc

In [58]: df.loc[idx]
Out[58]: 
   BoolCol
10    True
40    True
50    True

[3 rows x 1 columns]

注意,loc也可以接受布尔数组

In [55]: df.loc[df['BoolCol']]
Out[55]: 
   BoolCol
10    True
40    True
50    True

[3 rows x 1 columns]

如果您有一个布尔数组,mask并且需要序数索引值,则可以使用进行计算np.flatnonzero

In [110]: np.flatnonzero(df['BoolCol'])
Out[112]: array([0, 3, 4])

用于df.iloc按顺序索引选择行:

In [113]: df.iloc[np.flatnonzero(df['BoolCol'])]
Out[113]: 
   BoolCol
10    True
40    True
50    True

df.iloc[i] returns the ith row of df. i does not refer to the index label, i is a 0-based index.

In contrast, the attribute index returns actual index labels, not numeric row-indices:

df.index[df['BoolCol'] == True].tolist()

or equivalently,

df.index[df['BoolCol']].tolist()

You can see the difference quite clearly by playing with a DataFrame with a non-default index that does not equal to the row’s numerical position:

df = pd.DataFrame({'BoolCol': [True, False, False, True, True]},
       index=[10,20,30,40,50])

In [53]: df
Out[53]: 
   BoolCol
10    True
20   False
30   False
40    True
50    True

[5 rows x 1 columns]

In [54]: df.index[df['BoolCol']].tolist()
Out[54]: [10, 40, 50]

If you want to use the index,

In [56]: idx = df.index[df['BoolCol']]

In [57]: idx
Out[57]: Int64Index([10, 40, 50], dtype='int64')

then you can select the rows using loc instead of iloc:

In [58]: df.loc[idx]
Out[58]: 
   BoolCol
10    True
40    True
50    True

[3 rows x 1 columns]

Note that loc can also accept boolean arrays:

In [55]: df.loc[df['BoolCol']]
Out[55]: 
   BoolCol
10    True
40    True
50    True

[3 rows x 1 columns]

If you have a boolean array, mask, and need ordinal index values, you can compute them using np.flatnonzero:

In [110]: np.flatnonzero(df['BoolCol'])
Out[112]: array([0, 3, 4])

Use df.iloc to select rows by ordinal index:

In [113]: df.iloc[np.flatnonzero(df['BoolCol'])]
Out[113]: 
   BoolCol
10    True
40    True
50    True

回答 1

可以使用numpy where()函数来完成:

import pandas as pd
import numpy as np

In [716]: df = pd.DataFrame({"gene_name": ['SLC45A1', 'NECAP2', 'CLIC4', 'ADC', 'AGBL4'] , "BoolCol": [False, True, False, True, True] },
       index=list("abcde"))

In [717]: df
Out[717]: 
  BoolCol gene_name
a   False   SLC45A1
b    True    NECAP2
c   False     CLIC4
d    True       ADC
e    True     AGBL4

In [718]: np.where(df["BoolCol"] == True)
Out[718]: (array([1, 3, 4]),)

In [719]: select_indices = list(np.where(df["BoolCol"] == True)[0])

In [720]: df.iloc[select_indices]
Out[720]: 
  BoolCol gene_name
b    True    NECAP2
d    True       ADC
e    True     AGBL4

虽然您并不总是需要索引来进行匹配,但是如果需要的话:

In [796]: df.iloc[select_indices].index
Out[796]: Index([u'b', u'd', u'e'], dtype='object')

In [797]: df.iloc[select_indices].index.tolist()
Out[797]: ['b', 'd', 'e']

Can be done using numpy where() function:

import pandas as pd
import numpy as np

In [716]: df = pd.DataFrame({"gene_name": ['SLC45A1', 'NECAP2', 'CLIC4', 'ADC', 'AGBL4'] , "BoolCol": [False, True, False, True, True] },
       index=list("abcde"))

In [717]: df
Out[717]: 
  BoolCol gene_name
a   False   SLC45A1
b    True    NECAP2
c   False     CLIC4
d    True       ADC
e    True     AGBL4

In [718]: np.where(df["BoolCol"] == True)
Out[718]: (array([1, 3, 4]),)

In [719]: select_indices = list(np.where(df["BoolCol"] == True)[0])

In [720]: df.iloc[select_indices]
Out[720]: 
  BoolCol gene_name
b    True    NECAP2
d    True       ADC
e    True     AGBL4

Though you don’t always need index for a match, but incase if you need:

In [796]: df.iloc[select_indices].index
Out[796]: Index([u'b', u'd', u'e'], dtype='object')

In [797]: df.iloc[select_indices].index.tolist()
Out[797]: ['b', 'd', 'e']

回答 2

一种简单的方法是在过滤之前重置DataFrame的索引:

df_reset = df.reset_index()
df_reset[df_reset['BoolCol']].index.tolist()

有点hacky,但是很快!

Simple way is to reset the index of the DataFrame prior to filtering:

df_reset = df.reset_index()
df_reset[df_reset['BoolCol']].index.tolist()

Bit hacky, but it’s quick!


回答 3

首先,您可以检查query目标列的类型bool (PS:关于如何使用它,请检查链接

df.query('BoolCol')
Out[123]: 
    BoolCol
10     True
40     True
50     True

在通过Boolean列过滤原始df之后,我们可以选择索引。

df=df.query('BoolCol')
df.index
Out[125]: Int64Index([10, 40, 50], dtype='int64')

大熊猫也有nonzero,我们只需选择行的位置True然后使用它对DataFrameindex

df.index[df.BoolCol.nonzero()[0]]
Out[128]: Int64Index([10, 40, 50], dtype='int64')

First you may check query when the target column is type bool (PS: about how to use it please check link )

df.query('BoolCol')
Out[123]: 
    BoolCol
10     True
40     True
50     True

After we filter the original df by the Boolean column we can pick the index .

df=df.query('BoolCol')
df.index
Out[125]: Int64Index([10, 40, 50], dtype='int64')

Also pandas have nonzero, we just select the position of True row and using it slice the DataFrame or index

df.index[df.BoolCol.nonzero()[0]]
Out[128]: Int64Index([10, 40, 50], dtype='int64')

回答 4

如果只想使用一次数据框对象,请使用:

df['BoolCol'].loc[lambda x: x==True].index

If you want to use your dataframe object only once, use:

df['BoolCol'].loc[lambda x: x==True].index

回答 5

我扩展这个问题是如何获取rowcolumn并且value所有的比赛价值?

这是解决方案:

import pandas as pd
import numpy as np


def search_coordinate(df_data: pd.DataFrame, search_set: set) -> list:
    nda_values = df_data.values
    tuple_index = np.where(np.isin(nda_values, [e for e in search_set]))
    return [(row, col, nda_values[row][col]) for row, col in zip(tuple_index[0], tuple_index[1])]


if __name__ == '__main__':
    test_datas = [['cat', 'dog', ''],
                  ['goldfish', '', 'kitten'],
                  ['Puppy', 'hamster', 'mouse']
                  ]
    df_data = pd.DataFrame(test_datas)
    print(df_data)
    result_list = search_coordinate(df_data, {'dog', 'Puppy'})
    print(f"\n\n{'row':<4} {'col':<4} {'name':>10}")
    [print(f"{row:<4} {col:<4} {name:>10}") for row, col, name in result_list]

输出:

          0        1       2
0       cat      dog        
1  goldfish           kitten
2     Puppy  hamster   mouse


row  col        name
0    1           dog
2    0         Puppy

I extended this question that is how to gets the row, columnand value of all matches value?

here is solution:

import pandas as pd
import numpy as np


def search_coordinate(df_data: pd.DataFrame, search_set: set) -> list:
    nda_values = df_data.values
    tuple_index = np.where(np.isin(nda_values, [e for e in search_set]))
    return [(row, col, nda_values[row][col]) for row, col in zip(tuple_index[0], tuple_index[1])]


if __name__ == '__main__':
    test_datas = [['cat', 'dog', ''],
                  ['goldfish', '', 'kitten'],
                  ['Puppy', 'hamster', 'mouse']
                  ]
    df_data = pd.DataFrame(test_datas)
    print(df_data)
    result_list = search_coordinate(df_data, {'dog', 'Puppy'})
    print(f"\n\n{'row':<4} {'col':<4} {'name':>10}")
    [print(f"{row:<4} {col:<4} {name:>10}") for row, col, name in result_list]

Output:

          0        1       2
0       cat      dog        
1  goldfish           kitten
2     Puppy  hamster   mouse


row  col        name
0    1           dog
2    0         Puppy

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。