标签归档:pandas

PythonDataScienceHandbook-Python数据科学手册:Jupyter笔记本全文

如何使用本书

关于

本书是使用Python3.5编写和测试的,尽管其他Python版本(包括Python2.7)几乎可以在所有情况下运行

本书介绍了在Python中使用数据所必需的核心库:特别是IPythonNumPyPandasMatplotlibScikit-Learn,以及相关的软件包。假设您熟悉作为一种语言的Python;如果您需要快速介绍该语言本身,请参阅免费的配套项目,A Whirlwind Tour of Python:这是一本针对研究人员和科学家的快节奏Python语言入门教程

看见Index.ipynb有关可与正文一起使用的笔记本的索引,请参阅

软件

书中的代码使用Python 3.5进行了测试,但大多数(但不是全部)也可以在Python 2.7和其他较早的Python版本中正常运行

中列出了我用来运行书中代码的包requirements.txt(请注意,其中一些确切的版本号可能在您的平台上不可用:您可能需要调整它们以供您自己使用)。要使用以下命令安装需求,请执行以下操作conda,请在命令行中运行以下命令:

$ conda install --file requirements.txt

要创建名为的独立环境,请执行以下操作PDSH对于Python 3.5和所有必需的软件包版本,请运行以下命令:

$ conda create -n PDSH python=3.5 --file requirements.txt

中可以阅读有关使用Conda环境的更多信息Managing Environments部分的CONDA文档

许可证

代码

此存储库中的代码(包括上面列出的笔记本中的所有代码示例)发布在MIT license有关更多信息,请访问Open Source Initiative

文本

这本书的正文内容在CC-BY-NC-ND license欲了解更多信息,请访问Creative Commons

Pandas 灵活而强大的Python数据分析/操作库


Pandas:功能强大的Python数据分析工具包

那是什么?

Pandas 是一个Python包,它提供了快速、灵活和富有表现力的数据结构,旨在使处理“关系”或“标记”数据变得既简单又直观。旨在成为做实、做实挡路的基础性高水平建设。真实世界Python中的数据分析。此外,它还有更广泛的目标,即成为以任何语言提供的最强大、最灵活的开源数据分析/操作工具它已经在朝着这个目标前进了很久。

主要功能

以下是熊猫擅长的几件事:

  • 轻松处理missing data(表示为NaNNA,或NaT)在浮点和非浮点数据中
  • 大小可变:列可以是inserted and
    deleted
    来自DataFrame和高维对象
  • 自动和显式data alignment:对象可以显式地与一组标签对齐,或者用户可以简单地忽略标签并让SeriesDataFrame等在计算中自动对齐数据。
  • 强大、灵活group by对数据集执行拆分-应用-合并操作的功能,用于聚合和转换数据
  • 搞定easy to convert将其他Python和NumPy数据结构中的参差不齐、索引不同的数据转换为DataFrame对象
  • 基于智能标签的slicingfancy
    indexing
    ,以及subsetting大型数据集的
  • 直观mergingjoining数据集
  • 灵活性reshapingpivoting数据集的
  • Hierarchical轴的标签(每个刻度可以有多个标签)
  • 用于从以下位置加载数据的强大IO工具flat files(csv和分隔),Excel filesdatabases,以及从超高速数据库保存/加载数据HDF5 format
  • Time series-特定功能:日期范围生成和频率转换、移动窗口统计、日期移动和滞后

在哪里买到它?

源代码目前托管在GitHub上,地址为:https://github.com/pandas-dev/pandas

最新发布版本的二进制安装程序可在Python
Package Index (PyPI)
和OnConda

# conda
conda install pandas
# or PyPI
pip install pandas

依赖项

请参阅full installation instructions有关必需、建议和可选依赖项的最低支持版本

从源安装

要从源头安装熊猫,您需要Cython除了上面的正常依赖关系之外。Cython可以从PyPI安装:

pip install cython

pandas目录(与您在克隆git存储库后找到此文件的目录相同),执行:

python setup.py install

或用于安装在development mode

python -m pip install -e . --no-build-isolation --no-use-pep517

如果你有make,您也可以使用make develop要运行相同的命令,请执行以下操作

或者另选地

python setup.py develop

请参阅的完整说明installing from source

许可证

BSD 3

文档

官方文档托管在PyData.org上:https://pandas.pydata.org/pandas-docs/stable

背景

工作于pandas开始于AQR(一家量化对冲基金)于2008年成立,此后一直在积极发展

获取帮助

对于用法问题,最好的去处是StackOverflow此外,一般问题和讨论也可以在pydata mailing list

研讨与发展

在这次回购中,大多数开发讨论都是在gihub上进行的。此外,pandas-dev mailing list也可用于专门的讨论或设计问题,并且Gitter channel可用于解决与快速开发相关的问题

为熊猫做出贡献

欢迎所有贡献、错误报告、错误修复、文档改进、增强和想法

有关如何做出贡献的详细概述,请参阅contributing guide还有一个overview关于GitHub

如果您只是想开始使用PANDA代码库,请导航到GitHub “issues” tab开始研究有趣的问题。下面列出了许多问题Docsgood first issue在那里你可以开始

您还可以对问题进行分类,这可能包括重现错误报告,或要求提供重要信息,如版本号或重现说明。如果您想要开始对问题进行分类,一种简单的开始方法是subscribe to pandas on CodeTriage

或者,通过使用熊猫,你可能有了自己的想法,或者正在文档中寻找一些东西,并认为“这可以改进”。你可以做些什么!

您可以随时在mailing list或打开Gitter

作为这个项目的贡献者和维护者,你们应该遵守熊猫的行为准则。有关更多信息,请访问:Contributor Code of Conduct

PythonDataScienceHandbook-Python数据科学手册:Jupyter笔记本全文

Python Data Science Handbook

该存储库包含完整的Python数据科学手册,其形式为(免费!)Jupyter笔记本

如何使用本书

  • 请访问https://jakevdp.github.io/PythonDataScienceHandbook/在线阅读整本书
  • 使用此存储库的笔记本目录中提供的Jupyter笔记本运行代码
  • 使用Google Colab启动这些笔记本的可执行版本:
  • 使用活页夹使用以下笔记本启动实时笔记本服务器:
  • 通过O‘Reilly Media购买印刷书籍

关于

本书是使用Python3.5编写和测试的,尽管其他Python版本(包括Python2.7)几乎可以在所有情况下运行

本书介绍了在Python中使用数据所必需的核心库:特别是IPython、NumPy、Pandas、Matplotlib、Scikit-Learning和相关包。假设您熟悉Python作为一种语言;如果您需要快速介绍该语言本身,请参阅免费的配套项目-Python旋风之旅:这是针对研究人员和科学家的快速Python语言介绍

请参见Index.ipynb以获取可与文本一起使用的笔记本的索引

软件

书中的代码使用Python 3.5进行了测试,但大多数(但不是全部)也可以在Python 2.7和其他较早的Python版本中正常运行

我用来运行这本书中的代码的包列在Requirements.txt中(请注意,其中一些确切的版本号在您的平台上可能不可用:您可能必须调整它们以供您自己使用)。要使用CONDA安装需求,请在命令行运行以下命令:

$ conda install --file requirements.txt

要使用Python 3.5和所有必需的软件包版本创建名为pdsh的独立环境,请运行以下命令:

$ conda create -n PDSH python=3.5 --file requirements.txt

您可以在Conda文档的管理环境一节中阅读有关使用Conda环境的更多信息

许可证

代码

此存储库中的代码,包括上面列出的笔记本中的所有代码示例,都是在MIT许可下发布的。阅读更多关于开放源码计划的内容

文本

本书的文本内容在CC-by-NC-ND许可下发布。在知识共享网站上阅读更多内容

Pandas 实现列表分列与字典分列及三个实例

本文讲解了列表和字典转化为pandas的列的多种方法及实战例子和教程。

1.问题来源

源于林胖发出的一道基础题:

2.解法

2.1 基础解法explode函数

这道题最简单的解法,相信大部分用过pandas的朋友都会,林胖也马上发出了自己的答案:

import pandas as pd

mydict = {'A': [1], 'B': [2, 3], 'C': [4, 5, 6]}
pd.DataFrame(mydict.items()).explode(1)

结果:

详解

mydict.items()是python基础字典的内容,它返回了这个字典键值对组成的元组列表:

mydict.items()

返回:

dict_items([('A', [1]), ('B', [2, 3]), ('C', [4, 5, 6])])

将这个内部是元组的可迭代对象传入DataFrame的构造函数中:

pd.DataFrame(mydict.items())

返回结果:

这是pandas最基础的开篇知识点使用可迭代对象构造DataFrame,列表的每个元素都是整个DataFrame对应的一行,而这个元素内部迭代出来的每个元素将构成DataFrame的某一列。

然后再看看这个explode函数,它是pandas 0.25版本才出现的函数,只有一个参数可以传入列名,然后该函数就可以把该列的列表每个元素扩展到多行上。

效果与hive使用lateral view+explode实现的效果几乎一致,类似于:

select a,b_i from df lateral view explode(b) tmp as b_i;

可以参考很早之前的一篇文章:https://blog.csdn.net/as604049322/article/details/105985770

2.2 没有exlode函数如何解决这个问题

但是,黄佬说版本太低没有这个函数,于是我给群友们出了一道题:

在黄佬的邀请下,一位经过我多次辅导的群友率先使用了循环法解题:

我觉得非常棒,但我也希望看到有人再用变形法实现一次。林胖和一位群友再次给出了简化版本的循环解法:

经过一番提示后,小五哥和林胖终于给出了变形法的解法:

非常不错,群友们终于独立的多思路解决了这个问题,真的要撒花呀!!!

下面我们详细分析一下,循环法和变形法的解法吧:

2.3 循环法解题

基本写法:

result = []
for k, vs in mydict.items():
    for v in vs:
        result.append((k, v))
pd.DataFrame(result)

本质上就是实现了一个笛卡尔积的拉平操作,将mydict.items这个可迭代对象的元组构造笛卡尔积并按照整体拉平。

上面的基本写法,应该99%以上的朋友都能看懂,但 林胖 的循环简化解法:

import itertools
result = []
for k, v in mydict.items():
    result.extend(itertools.product(k, v))
pd.DataFrame(result)

部分朋友可能没有看明白,这个就需要查询一下product方法的官方文档(https://docs.python.org/zh-cn/3.7/library/itertools.html?highlight=product#itertools.product):

product(*iterables, repeat=1) --> product object

参数:

  • iterables 为可迭代对象
  • 可选参数repeat 表示重复次数

用于生成可迭代对象输入的笛卡儿积,相当于生成器表达式中的嵌套循环。

例如:product(A, B) 中的元素A和B将共同构成可迭代元素[A, B]作为iterables传入和 ((x,y) for x in A for y in B) 返回结果一样。

返回示例:

  • product(‘ab’, range(3)) –> (‘a’,0) (‘a’,1) (‘a’,2) (‘b’,0) (‘b’,1) (‘b’,2)
  • product((0,1), (0,1), (0,1)) –> (0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) …

也可以传入可选参数 repeat 表示重复的次数:例如,product(A, repeat=4)product(A, A, A, A) 的返回结果是一样的。


列表的extend方法是将可迭代对象的每个元素都添加到列表中,而append方法只能添加单个元素。

当然,我们还可以将整个for循环改写成列表生成式:

result = [(k, v) for k, vs in mydict.items() for v in vs]
pd.DataFrame(result)

也可以简化代码量。

2.4 变形法解题

df = pd.DataFrame(mydict.items(), columns=["a", "b"])
df

实现思路,上面的界面是下面最左边:

2.4.1 列表分列的2种方法

列表分列的思路:Pandas的Series对象调用apply方法单个元素返回的结果是Series时,这个Series的每个数据会作为Datafrem的每一列,索引会作为列名。

对Series进行列表分列

例如:

df["b"].apply(pd.Series)

结果:

不过这样会丢失原本的”a”列,我们可以先将”a”列设置为索引,再进行Series分列操作:

df.set_index("a")["b"].apply(pd.Series)

或者把结果设置成原本的”a”列为索引:

df["b"].apply(pd.Series).set_index(df["a"])

结果均为上述实现思路的第二步。

直接对Datafream进行列表分列

如果我们希望直接使用Datafream实现分列可以借助agg方法,因为agg方法是对每一列的Series对象操作:

df.agg({"a": lambda x: x, "b": pd.Series})

结果:

但这操作导致列多了一个级别,需要删除:

df.agg({"a": lambda x: x, "b": pd.Series}).droplevel(0, axis=1)

结果:

只要再执行set_index("a")

df.agg({"a": lambda x: x, "b": pd.Series}).droplevel(0, axis=1).set_index("a")

结果就会与实现思路的第二步结果一致。

2.4.2 将字典的键作为索引的2种读取方法

当然上面我只是为了给大家讲述分列的一些方法。对于这个例子,其实我们可以直接通过pd.DataFrame.from_dict方法orient参数传入’index’,直接获得第二步的结果(只是索引没有名称):

df = pd.DataFrame.from_dict(mydict, 'index')

或者分别传入data和索引index:

df = pd.DataFrame(data=mydict.values(), index=mydict.keys())

都能得到以下结果:

2.4.3 melt实现逆透视

说起逆透视我个人首先想到了melt方法,然后才想到melt方法实现的本质用到了stack方法。

为了避免索引丢失,我们首先还原索引为普通的列:

df = df.rename_axis(index="a").reset_index()
df

结果:

然后使用melt方法进行逆透视:

df.melt(id_vars='a', value_name='b')

结果:

然后删除第二列,再删除空值行,再将数值列转换为整数类型就搞定。

最终代码:

df = pd.DataFrame.from_dict(mydict, 'index')
df = df.melt(id_vars='a', value_name='b').drop(columns="variable").dropna()
df.b = df.b.astype("int")
df

成功得到结果:

2.4.4 stack实现逆透视

df = pd.DataFrame.from_dict(mydict, 'index')
df.stack()

结果:

A  0    1.0
B  0    2.0
   1    3.0
C  0    4.0
   1    5.0
   2    6.0
dtype: float64

结果返回了一个多级索引的Series,我们首先需要删除索引中多余的部分:

df.stack().droplevel(1)

结果:

A    1.0
B    2.0
B    3.0
C    4.0
C    5.0
C    6.0
dtype: float64

此时我们再还原索引到普通列:

df.stack().droplevel(1).reset_index()

再重新设置一下列名:

df.stack().droplevel(1).reset_index().set_axis(["a", "b"], axis=1)

最后重设一下B列的类型:

df.b = df.b.astype("int")

最终代码:

df = pd.DataFrame.from_dict(mydict, 'index')
df = df.stack().droplevel(1).reset_index().set_axis(["a", "b"], axis=1)
df.b = df.b.astype("int")
df

结果:

2.实际应用

这次我将分享三个实际案例,让大家看看列表分列的一些实际应用。

首先,我们先导包并设置Pandas显示参数:

import pandas as pd
pd.set_option("display.max_colwidth"100)

正则提取并分列

需求:

读取数据:

df = pd.read_excel("正则提取与分列.xlsm", usecols=[0])
df.head()

结果:

实现代码:

result = df.copy()
result["tmp"] = result["补回原因"].str.findall("([\d.]+[到至][\d.]+)")
result = result.agg({"补回原因"lambda x: x, "tmp": pd.Series}).droplevel(0, axis=1)
result.head()

结果:

分步解析:

df["tmp"] = df["补回原因"].str.findall("([\d.]+[到至][\d.]+)")
df.head(5)

结果:

这步使用正则提取出每个日期字符串,[\d.]+表示连续的数字或.用于匹配时间字符串,两个时间之间的连接字符可能是到或至。

然后我使用agg函数直接对Datafream分列:

df.agg({"补回原因"lambda x: x, "tmp": pd.Series})

结果:

由于列索引多了一级,所以需要删除:

df.agg({"补回原因"lambda x: x, "tmp": pd.Series}).droplevel(0, axis=1).head()

结果:

droplevel(0, axis=1)用于删除多级索引指定的级别,axis=0可以删除行索引,axis=1则可以删除列索引,第一参数表示删除级别0。当然如果列索引存在名称时还可以传入名称字符串,可参考官网文档:

df = pd.DataFrame([
...     [1234],
...     [5678],
...     [9101112]
... ]).set_index([01]).rename_axis(['a''b'])
>>> df.columns = pd.MultiIndex.from_tuples([
...    ('c''e'), ('d''f')
... ], names=['level_1''level_2'])
>>> df
level_1   c   d
level_2   e   f
a b
1 2      3   4
5 6      7   8
9 10    11  12
>>> df.droplevel('a')
level_1   c   d
level_2   e   f
b
2        3   4
6        7   8
10      11  12
>>> df.droplevel('level2', axis=1)
level_1   c   d
a b
1 2      3   4
5 6      7   8
9 10    11  12

分组聚合并分列

需求:

首先,读取数据:

df = pd.read_excel("分组聚合并分列.xlsx")
df

结果:

实现代码:

(
    df.groupby("姓名")["得分"]
    .apply(list)
    .apply(pd.Series)
    .fillna("")
    .rename(columns=lambda x: f"得分{x+1}")
    .reset_index()
    .astype({"得分1":"int8"})
)

结果:

分布解析:

首先将每个姓名的得分聚合成列表,并最终返回一个Series:

df.groupby("姓名")["得分"].apply(list)

结果:

姓名
孙四娘          [7, 28]
看见星光    [88, 28, 23]
看见月光    [69, 10, 87]
老祝          [51, 29]
马青梅             [99]
Name: 得分, dtype: object

当然,这步的标准写法应该是使用Series的内部方法:

df.groupby("姓名")["得分"].apply(lambda x:x.to_list())

使用Series内部方法的性能比python列表方法转换快一些。

作为一个Series就可以通过将每个列表元素转换为Series,从而最终返回一个分列的Datafream:

_.apply(pd.Series)

结果:

注意:_在ipython表示上一个输出返回的结果,jupyter还额外支持_num表示num编号单元格的输出。

_.fillna("")

结果:

fillna表示填充缺失值,传入””表示将缺失值填充为空字符串。

下面重命名一下列名:

_.rename(columns=lambda x: f"得分{x+1}")

结果:

然后还原索引:

_.reset_index()

结果:

发现结果中有一列,不是整数,所以还原成整数(总分100分,8位足够存储):

_.astype({"得分1":"int8"})

结果:

解析json字符串并字典分列

需求:

首先读取数据:

df = pd.read_excel("字典分列.xlsx")
df.head()

结果:

处理代码:

result = df.features.apply(eval).apply(pd.Series)
result["counts"] = df.counts
result

结果:

  储存条件 品牌 推荐理由 品种 食用方式 是否进口 特色服务 是否有机 counts
0 常温 NaN NaN NaN NaN NaN NaN NaN 33
1 冷藏 NaN NaN NaN NaN NaN NaN NaN 24
2 常温 禾煜 NaN NaN NaN NaN NaN NaN 22
3 常温 妙洁 NaN NaN NaN NaN NaN NaN 16
4 冷冻 NaN NaN NaN NaN NaN NaN NaN 14
2083 常温 乐事 够薄够脆 NaN NaN NaN NaN NaN 1
2084 冷藏 NaN 生态种植 黄瓜 NaN NaN NaN 有机 1
2085 冷藏 NaN 腥味较淡 鲫鱼 NaN NaN 免费宰杀 NaN 1
2086 冷藏 NaN 甜脆可口 佛手瓜 NaN NaN NaN NaN 1
2087 冷藏 叮咚日日鲜 全程可追溯 猪小排 NaN NaN NaN NaN 1

2088 rows × 9 columns

浅析:

df.features.apply(eval)用于将features列的每个json字符串解析为字典对象。

**.apply(pd.Series)则可以将每个字典对象转换成Series,则可以将该字典扩展到多列,并将原始的Series转换为Datafream。

result["counts"] = df.counts则将原始数据的counts列添加到结果列中。

本文转自快学Python,有部分增删。

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!

给作者打赏,选择打赏金额
¥1¥5¥10¥20¥50¥100¥200 自定义

​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典

Pandas实战教程:将Excel转为html格式

大家谈及用Pandas导出数据,应该就会想到to.xxx系列的函数。

这其中呢,比较常用的就是pd.to_csv()pd.to_excel()。但其实还可以将其导成Html网页格式,这里用到的函数就是pd.to_html()

读取Excel

今天我们要实现Excel转为html格式,首先需要用读取Excel中的表格数据。

import pandas as pd
data = pd.read_excel('测试.xlsx')

查看数据

data.head()

下面我们来学习把DataFrame转换成HTML表格的方法。

生成Html

to_html()函数可以直接把DataFrame转换成HTML表格,只需一行代码即可实现:

html_table = data.to_html('测试.html')

运行上面代码后,工作目录中多了测试.html文件,使用网页浏览器打开它,显示内容如下👇

print(data.to_html())

通过print打印,可以看到DataFrame的内部结构被自动转换为嵌入在表格中的<TH>,<TR>,<TD>标签,保留所有内部层级结构。

调整格式

我们还可以自定义修改参数,来调整生成HTML的格式。

html_table = data.to_html('测试.html',header = True,index = False,justify='center')

再次打开新生成的测试.html文件,发现格式已经发生了变化。

如果想对格式进行进一步调整(增加标题、修改颜色等),就需要一些HTML知识了,可以对生成的测试.html文件中的文本进行调整。

对于有些小伙伴可能需要进行页面展示,就要搭配Flask库来使用了。

小结

Pandas提供read_html()to_html()两个函数用于读写html格式的文件。这两个函数非常有用,一个轻松将DataFrame等复杂的数据结构转换成HTML表格;另一个不用复杂爬虫,简单几行代码即可抓取Table表格型数据,简直是个神器!

今天篇幅很短,主要讲了Pandas中to_html()这个函数。使用该函数最大的优点是:我们在不了解html知识的情况下,就能生成一个表格型的HTML。本文转自快学Python

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!

给作者打赏,选择打赏金额
¥1¥5¥10¥20¥50¥100¥200 自定义

​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典

Pandas 实战 — 结构化数据非等值范围查找

本文通过两个案例,三个部分介绍了如何在 pandas 结构化数据中进行高效的范围查找。

1.简单案例讲解

Pandas案例需求

有两张表,A表记录了很多款产品的三个基础字段,分别是产品ID,地区代码和重量:

B表是运费明细表,这个表结构很“业务”。每行对应着单个地区,不同档位重量,所对应的运费:

比如121地区,0-0.5kg的产品,运费是5.38元;2.01(实际应该是大于1)-3kg,运费则是5.44元。
现在,我们想要结合A表和B表,统计出A表每个产品付多少运费,应该怎么实现?
可以先自己思考一分钟!

解题思路

人海战术

任何数据需求,在人海战术面前都是弟弟。

A表一共215行,我们只需要找215个人,每个人只需要记好自己要统计那款产品的地区代码和重量字段,然后在B表中根据地区代码,找到所在地区运费标准,然后一眼扫过去,就能得到最终运费了。

两个“只需要”,问题就这样easy的解决了。

问题变成了,我还差214个人。

解构战术

通过人海战术,我们其实已经明确了解题的朴素思路:根据地区代码和重量,和B表匹配,返回运费结果。

难点在于,B表是偏透视表结构的,运费是横向分布,用Pandas就算用地区代码匹配,还是不能找到合适的运费区间。

怎么办呢?

如果我们把B表解构,变成“源数据”格式,问题就全部解决了:

转换完成后,和A表根据地区代码做一个匹配筛选,答案就自己跑出来了。
下面是动手时刻。

具体实现

先导入数据,A表(product):

B表(cost):

要想把B表变成“源数据”的格式,关键在于理解stack()堆叠操作,结合示例图比较容易搞懂:

通过stack操作,把多列变为单列多行,原本的2列数据堆成了1列,从而方便了一些场景下的匹配。要变回来也很简单,unstack即可:

在我们的具体场景中,先指定好不变的索引列,然后直接上stack:

这样,就得到了我们目标的源数据。接着,A表和B表做匹配:

值得注意的是,因为我们根据每个地方的重量区间做了堆叠,这里的匹配结果,每个产品保留了对应地区,所有重量区间的价格,离最终结果还有一步之遥。
需要把重量区间做拆分,从而和产品重量对比,找到对应的重量区间:

接着,根据重量的最低、最高区间,判断每一行的重量是否符合区间:

最后,筛选出符合区间的产品,及对应的价格等字段:

大功告成!

2.复杂一点的情况

Pandas案例需求

需求如下:

该问题最核心的解题思路是按照地区代码先将两张表关联起来,然后按照重量是否在指定的区间筛选出符合条件的记录。不同的解法实际区别也是,如何进行表关联,如何进行关联后的过滤。

上文的简化写法

简化后:

import pandas as pd

product = pd.read_excel('sample.xlsx', sheet_name='A')
cost = pd.read_excel('sample.xlsx', sheet_name='B')

fi_cost = cost.set_index(['地区代码','地区缩写']).stack().reset_index()
result = pd.merge(product, fi_cost, on='地区代码', how='left')
result.columns = ['产品ID''地区代码''重量''地区缩写''重量区间''价格']
result[['最低区间''最高区间']] = result['重量区间'].str.split('~', expand=True).astype(float)
result.query("最低区间<=`重量`<=最高区间")

顺序查找匹配

考虑到直接merge会产生笛卡尔积,多消耗N倍的内存,所以下面采用筛选连接法,执行耗时比merge连接稍微长点,但减少了内存消耗。

首先读取数据:

import pandas as pd
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = 'all'

product = pd.read_excel('sample.xlsx', sheet_name='A')
cost = pd.read_excel('sample.xlsx', sheet_name='B')

预览数据:

product.head()
cost.head()

下面我们将价格表由”宽格式”旋转为”长格式”方便匹配:

fi_cost = cost.melt(id_vars=["地区代码""地区缩写"], var_name="重量区间", value_name='价格')
fi_cost

观察价格区间0~0.5, 0.501~1, 1.01~2, 2.01~3, 3.01~4, 4.01~5, 5.01~7, 7.01~10, 10.01~15, 15.01~100000我们完全可以只取前面的数字或只取后面的数字,理解为一个前闭后开或前开后闭的区间,我取重量区间的最大值来表示区间:

fi_cost.重量区间 = fi_cost.重量区间.str.split("~").str[1].astype("float")
fi_cost.sort_values(["地区代码""重量区间"], inplace=True, ignore_index=True)
fi_cost.head(10)

测试对第一个产品,取出对应的地区价格表:

fi_cost_g = fi_cost.groupby("地区代码")
for product_id, area_id, weight in product.values:
    print(product_id, area_id, weight)
    cost_table = fi_cost_g.get_group(area_id)
    display(cost_table)
    break

下面我们继续测试根据重量筛选出对应的价格:

fi_cost_g = fi_cost.groupby("地区代码")[["地区缩写""重量区间""价格"]]
for product_id, area_id, weight in product.values:
    print(product_id, area_id, weight)
    cost_table = fi_cost_g.get_group(area_id)
    display(cost_table)
    for area, weight_cost, price in cost_table.values:
        if weight <= weight_cost:
            print(area, price)
            break
    break

可以看到已经顺利的匹配出对应的价格是20.05。

于是完善最终代码为:

result = []
fi_cost_g = fi_cost.groupby("地区代码")[["地区缩写""重量区间""价格"]]
for product_id, area_id, weight in product.values:
    cost_table = fi_cost_g.get_group(area_id)
    for area, weight_cost, price in cost_table.values:
        if weight <= weight_cost:
            break
    result.append((product_id, area_id, area, weight, price))
result = pd.DataFrame(result, columns=["产品ID""地区代码""地区缩写""重量(kg)""价格"])
result

成功匹配出每个产品对应的地区简写和价格。

顺序查找匹配的完整代码为:

import pandas as pd

product = pd.read_excel('sample.xlsx', sheet_name='A')
cost = pd.read_excel('sample.xlsx', sheet_name='B')

fi_cost = cost.melt(id_vars=["地区代码""地区缩写"], var_name="重量区间", value_name='价格')
fi_cost.重量区间 = fi_cost.重量区间.str.split("~").str[1].astype("float")
fi_cost.sort_values(["地区代码""重量区间"], inplace=True, ignore_index=True)
result = []
fi_cost_g = fi_cost.groupby("地区代码")[["地区缩写""重量区间""价格"]]
for product_id, area_id, weight in product.values:
    cost_table = fi_cost_g.get_group(area_id)
    for area, weight_cost, price in cost_table.values:
        if weight <= weight_cost:
            break
    result.append((product_id, area_id, area, weight, price))
result = pd.DataFrame(result, columns=["产品ID""地区代码""地区缩写""重量(kg)""价格"])
result

3.优化方案

前面两部分内容就已经解决了问题,考虑到上述区间查找其实是一个顺序查找的问题,所以我们可以使用二分查找进一步优化减少查找次数。

当然二分查找对于这种2位数级别的区间个数查找优化不明显,但是当区间增加到万级别,几十万的级别时,那个查找效率一下子就体现出来了,大概就是几万次查找和几次查找的区别。

字典查找+二分查找高效匹配

本次优化,主要通过字典查询大幅度加快了查询的效率,几乎实现了将非等值连接转换为等值连接。

首先读取数据:

import pandas as pd

product = pd.read_excel('sample.xlsx', sheet_name='A')
cost = pd.read_excel('sample.xlsx', sheet_name='B')
cost.head()

下面计划将价格表直接转换为能根据地区代码和索引快速查找价格的字典。

先取出区间范围列表,用于索引位置查找:

price_range = cost.columns[2:].str.split("~").str[1].astype("float").tolist()
price_range

结果:

[0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 7.0, 10.0, 15.0, 100000.0]

下面将测试二分查找的效果:

import bisect
import numpy as np

for a in np.linspace(0.5510):
    idx = bisect.bisect_left(price_range, a)
    print(a, idx)

结果:

0.5 0
1.0 1
1.5 2
2.0 2
2.5 3
3.0 3
3.5 4
4.0 4
4.5 5
5.0 5

可以打印索引列表方便对比:

print(*enumerate(price_range))

结果:

(0, 0.5) (1, 1.0) (2, 2.0) (3, 3.0) (4, 4.0) (5, 5.0) (6, 7.0) (7, 10.0) (8, 15.0) (9, 100000.0)

经过对比可以看到,二分查找可以正确的找到一个指定的重量在重量区间的索引位置。

于是我们可以构建地区代码和索引位置作联合主键快速查找价格的字典:

cost_dict = {}
for area_id, area, *prices in cost.values:
for idx, price in enumerate(prices):
        cost_dict[(area_id, idx)] = area, price

然后就可以批量查找对应的运费了:

result = []
for product_id, area_id, weight in product.values:
    idx = bisect.bisect_left(price_range, weight)
    area, price = cost_dict[(area_id, idx)]
    result.append((product_id, area_id, area, weight, price))
result = pd.DataFrame(result, columns=["产品ID""地区代码""地区缩写""重量(kg)""价格"])
result

字典查找+二分查找高效匹配的完整代码:

import pandas as pd
import bisect

product = pd.read_excel('sample.xlsx', sheet_name='A')
cost = pd.read_excel('sample.xlsx', sheet_name='B')
price_range = cost.columns[2:].str.split("~").str[1].astype("float").tolist()
cost_dict = {}
for area_id, area, *prices in cost.values:
for idx, price in enumerate(prices):
        cost_dict[(area_id, idx)] = area, price
result = []
for product_id, area_id, weight in product.values:
    idx = bisect.bisect_left(price_range, weight)
    area, price = cost_dict[(area_id, idx)]
    result.append((product_id, area_id, area, weight, price))
result = pd.DataFrame(result, columns=["产品ID""地区代码""地区缩写""重量(kg)""价格"])
result

两种算法的性能对比

可以看到即使如此小的数据量下依然存在几十倍的性能差异,将来更大的数量量时,性能差异会更大。

将非等值连接转换为等值连接

基于以上测试,我们可以将非等值连接转换为等值连接直接连接出结果,完整代码如下:

import pandas as pd
import bisect

product = pd.read_excel('sample.xlsx', sheet_name='A')
cost = pd.read_excel('sample.xlsx', sheet_name='B')
price_range = cost.columns[2:].str.split("~").str[1].astype("float").tolist()
cost.columns = ["地区代码""地区缩写"]+list(range(cost.shape[1]-2))
cost = cost.melt(id_vars=["地区代码""地区缩写"],
                       var_name='idx', value_name='运费')
product["idx"] = product["重量(kg)"].apply(
lambda weight: bisect.bisect_left(price_range, weight))
result = pd.merge(product, cost, on=['地区代码''idx'], how='left')
result.drop(columns=["idx"], inplace=True)
result

该方法的平均耗时为6ms:

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!

给作者打赏,选择打赏金额
¥1¥5¥10¥20¥50¥100¥200 自定义

​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典

Python 一行语句算出每个省的面积—geopandas

教你如何用一行语句算出每个省的面积—Geopandas.

GeoPandas是一个基于pandas,针对地理数据做了特别支持的第三方模块。

它继承pandas.Series和pandas.Dataframe,实现了GeoSeries和GeoDataFrame类,使得其操纵和分析平面几何对象非常方便。

1.准备

开始之前,你要确保Python和pip已经成功安装在电脑上噢,如果没有,请访问这篇文章:超详细Python安装指南 进行安装。如果你用Python的目的是数据分析,可以直接安装Anaconda:Python数据分析与挖掘好帮手—Anaconda

Windows环境下打开Cmd(开始—运行—CMD),苹果系统环境下请打开Terminal(command+空格输入Terminal),准备开始输入命令安装依赖。

当然,我更推荐大家用VSCode编辑器,把本文代码Copy下来,在编辑器下方的终端运行命令安装依赖模块,多舒服的一件事啊:Python 编程的最好搭档—VSCode 详细指南。

由于geopandas涉及到许多第三方依赖,pip安装起来非常麻烦。因此在本教程中,我只推荐使用conda安装geopandas:

conda install geopandas

一行语句即可完成安装。

2.基本使用

设定坐标绘制简单的图形:

>>> import geopandas
>>> from shapely.geometry import Polygon
>>> p1 = Polygon([(0, 0), (1, 0), (1, 1)])
>>> p2 = Polygon([(0, 0), (1, 0), (1, 1), (0, 1)])
>>> p3 = Polygon([(2, 0), (3, 0), (3, 1), (2, 1)])
>>> g = geopandas.GeoSeries([p1, p2, p3])
>>> g
0    POLYGON ((0 0, 1 0, 1 1, 0 0))
1    POLYGON ((0 0, 1 0, 1 1, 0 1, 0 0))
2    POLYGON ((2 0, 3 0, 3 1, 2 1, 2 0))
dtype: geometry

这里有一个强大的用法,通过area属性,geopandas能直接返回这些图形的面积:

>>> print(g.area)
0    0.5
1    1.0
2    1.0
dtype: float64

不仅如此,通过plot属性函数,你还可以直接生成matplotlib图。

>>> g.plot()

通过matplot的pyplot,可以将图片保存下来:

import matplotlib.pyplot as plt
g.plot()
plt.savefig("test.png")

学会上面的基本用法, 我们就可以进行简单的地图绘制及面积的计算了。

3.绘制并算出每个省的面积

此外,它最大的亮点是可以通过fiona读取比如ESRI shapefile(一种用于存储地理要素的几何位置和属性信息的非拓扑简单格式)。

import geopandas
import matplotlib.pyplot as plt
from shapely.geometry import Polygon
maps = geopandas.read_file('1.shx')
# 读取的数据格式类似于
#                                             geometry
# 0   POLYGON ((1329152.341 5619034.278, 1323327.591...
# 1   POLYGON ((-2189253.375 4611401.367, -2202922.3...
# 2   POLYGON ((761692.092 4443124.843, 760999.873 4...
# 3   POLYGON ((-34477.046 4516813.963, -41105.128 4...
# ... ...
maps.plot()
plt.savefig("test.png")

如代码所示,通过read_file你可以读取shx、gpkg、geojson等数据。读取出来的图形如下:

同样滴,我这个shapefile是省级行政区的,每一个省级行政区都被划分为一个区块,因此可以一行语句算出每个省级行政区所占面积:

print(maps.area)
# 0     4.156054e+11
# 1     1.528346e+12
# 2     1.487538e+11
# 3     4.781135e+10
# 4     1.189317e+12
# 5     1.468277e+11
# 6     1.597052e+11
# 7     9.770609e+10
# 8     1.385692e+11
# 9     1.846538e+11
# 10    1.015979e+11
# ... ...

怎么样,是不是很酷?它还有许多更库的特性,欢迎阅读官方文档:
https://geopandas.readthedocs.io/

本文用到的shx格式省级行政区数据,可以在【Python实用宝典】公众号后台回复 省级行政区下载。​

我们的文章到此就结束啦,如果你喜欢今天的Python 实战教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!


​Python实用宝典 (pythondict.com)
不只是一个宝典
欢迎关注公众号:Python实用宝典