标签归档:绘图

Altair 一个漂亮易用的统计可视化库,甚至可拖动计数!

Altair 是一个基于Jupyter Notebook的强大可视化库。它提供了强大而简洁的可视化语法,使我们能够快速构建各种统计可视化图表。

通过下面10行代码,你就能创建一个可交互的散点图:

import altair as alt

from vega_datasets import data
cars = data.cars()

alt.Chart(cars).mark_point().encode(
    x='Horsepower',
    y='Miles_per_Gallon',
    color='Origin',
).interactive()

1.准备

开始之前,你要确保Python和pip已经成功安装在电脑上,如果没有,请访问这篇文章:超详细Python安装指南 进行安装。

(可选1) 如果你用Python的目的是数据分析,可以直接安装Anaconda:Python数据分析与挖掘好帮手—Anaconda,它内置了Python和pip.

(可选2) 此外,推荐大家用VSCode编辑器来编写小型Python项目:Python 编程的最好搭档—VSCode 详细指南

Windows环境下打开Cmd(开始—运行—CMD),苹果系统环境下请打开Terminal(command+空格输入Terminal),输入命令安装依赖:

pip install altair vega_datasets

2.Altair 基本使用

Altair 中的数据是围绕 Pandas Dataframe 构建的。

我们首先导入 Pandas 并创建一个简单的 DataFrame 以进行可视化,a 列中有一个分类变量,b 列有一个数值变量:

import pandas as pd
data = pd.DataFrame({'a': list('CCCDDDEEE'),
                     'b': [2, 7, 4, 1, 2, 6, 8, 4, 7]})

Altair 中的基本对象是Chart,它将上述的数据作为单个参数:

import altair as alt
chart = alt.Chart(data)

到目前为止,我们已经定义了 Chart 对象,但是我们还没有告诉图表对数据任何事情。接下来会出现。

有了这个图表对象,我们现在可以指定我们希望如何可视化数据,比如作为点:

alt.Chart(data).mark_point()

然后对数据进行编码,比如指定 a 列为x,b列为y:

alt.Chart(data).mark_point().encode(
    x='a', y='b'
)

效果如下:

如果你希望聚合求得某列得平均值,你还可以这么做:

alt.Chart(data).mark_point().encode(
    x='a',
    y='average(b)'
)

如果你希望使用柱状图,只需要把mark_point改为mark_bar:

alt.Chart(data).mark_bar().encode(
    x='a',
    y='average(b)'
)

还可以获得水平柱状图,我们只需要把x和y对调一下:

alt.Chart(data).mark_bar().encode(
    y='a',
    x='average(b)'
)

除了点状图和柱状图,Altair 还支持几十种图表类型:

更多的图表类型请在官网查看:

https://altair-viz.github.io/gallery/index.html

3.高级使用

你可以给图表自定义你喜欢的颜色和对应的横坐标纵坐标标题:

alt.Chart(data).mark_bar(color='firebrick').encode(
    alt.Y('a', title='category'),
    alt.X('average(b)', title='avg(b) by category')
)

你还可以将图表保存为HTML:

chart = alt.Chart(data).mark_bar().encode(
    x='a',
    y='average(b)',
)
chart.save('chart.html')

如果你希望能够通过区间选择数据点并计数,你可以这么做:

import altair as alt
from vega_datasets import data

source = data.cars()

brush = alt.selection(type='interval')

points = alt.Chart(source).mark_point().encode(
    x='Horsepower',
    y='Miles_per_Gallon',
    color=alt.condition(brush, 'Origin', alt.value('lightgray'))
).add_selection(
    brush
)

bars = alt.Chart(source).mark_bar().encode(
    y='Origin',
    color='Origin',
    x='count(Origin)'
).transform_filter(
    brush
)

points & bars

跟牛逼的是,Altair还可以做多图表联动:

# 公众号:Python实用宝典 整合
import altair as alt
from vega_datasets import data

cars = data.cars.url
brush = alt.selection_interval()

chart = alt.Chart(cars).mark_point().encode(
    y='Horsepower:Q',
    color=alt.condition(brush, 'Origin:N', alt.value('lightgray'))
).properties(
    width=250,
    height=250
).add_selection(
    brush
)

chart.encode(x='Acceleration:Q') | chart.encode(x='Miles_per_Gallon:Q')

左边圈起来的 Acceleration 数据点,右边会对应显示其 Miles_per_Gallon 数据点:

除了这些,Altair还有更多的交互功能,比如选择框拖动、比例绑定、自动响应、表达式选择等等,你可以阅读 Altair 官网学习并使用:

https://altair-viz.github.io/user_guide/interactions.html

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!


​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典

Python tiler 生成复古像素图片实战教程

像文字云一样,用各种小图拼出大的图片,构建一个像素风的世界,就像《我的世界》里一样,一定非常有趣,Python Tiler模块可以帮助我们做到这一点。
Python tiler 生成复古像素图片实战教程
还可以拿来做拼贴画、十字绣等装饰。
在这个名为 tiler 的 GitHub 开源项目里你就可以自动实现这一切,它刚刚开源一天,就已经涨到了 1500 星,增长速度肉眼可见。
https://github.com/nuno-faria/tiler
Tiler,意味瓦工,也就是用各种小元素作为 “瓦”,搭建出一张大图片。
项目预设了不少 “瓦”:有乐高、加号、圆形、@符号、心形、乘号、波浪线、横竖条、《我的世界》中的各种格子,以及曲别针形:
另外还有一组万圣节主题 icon,包括各种南瓜灯、小鬼头、蝙蝠、猫头鹰:
这些不同的 “瓦” 都可以设定大小颜色和角度,以适应不同的画面规格。
另外,你还可以设定整个画面中由多少种颜色构成和 “瓦片” 的大小,也就是马赛克的模糊程度。
你可以用不同材质的 “瓦片”,拼接出各种图案。
比如梵高的《星空》,项目中展示了 10×10、25×25、50×50 三种圆形拼成的规格:
10×10 的《星空》
25×25 的《星空》
50×50 的《星空》
有没有在 PS 里拖动高斯模糊半径控制条的感觉?
你也可以设置让构成图片的 “瓦片” 大小不一
也可以试试拿乐高积木来拼:
放大看,斑斓的星空,是这样的:
一个个小砖块,布满了乐高积木表面特有的圆形凸起。
嗯,要是真有这么大一片乐高,想想就爽歪歪。
(此处冲去乐高门店下单,金币 – 1000)
还有乘号版:
如果放大,你就会发现,这就是十字绣的图样啊!
这么大一副十字绣,色彩艳丽,斑斓交错,一看就可以玩很久,退休老母亲看到两眼发光。
就是绣完挂在家里,也和你北欧风 / 极简风 / 莫兰迪风 / 自如风的房间非常搭配,成为全场最吸睛的装饰画。
要是木有耐心,可以考虑一个迷你版:
还可以做成《我的世界》的样子
星空的细节如下:
你们能认识这些砖块都是啥么……

Python tiler 实战教程

如果想在自己电脑上运行的话,除了 Python 3 和 pip,你还需要装 OpenCV、numpy 和 tqdm。
之后,靠命令行就可以解决了。
你需要设置几个参数:
在 gen_tiles.py 中设置:
DEPTH:每个颜色通道中的分割数量 (ex: DEPTH = 4 -> 4 * 4 * 4 = 64 colors);
ROTATIONS:旋转列表,以度为单位,应用在原始图像上 (ex: [0, 90])。
在 tiler.py 中设置:
COLOR_DEPTH:每个颜色通道中的分割数量 (ex: COLOR_DEPTH = 4 -> 4 4 4 = 64 colors);
RESIZING_SCALES:应用于每个图块的比例 (ex: [1, 0.75, 0.5, 0.25]);
PIXEL_SHIFT:移动以创建每个框的像素数 (ex: (5,5)); if None, shift will be the same as the tile dimension);
OVERLAP_TILES:如果构成图像的 “瓦片” 可以重叠;
RENDER:渲染图像;
POOL_SIZE:多处理池大小;
IMAGE_TO_TILE:图像到瓦片(如果作为第一个参数传递则忽略);
TILES_FOLDER:瓦片文件夹(如果作为第二个 arg 传递则忽略);
OUT:结果图像文件名。

脑洞丰富的作者

这个项目的作者 ID 叫 nuno-faria,除了这个 Tiler 项目之外,他还开源过不少有趣的东西。
有一个用 Java 写的推箱子:
像素风满满的桌面足球:
还有俄罗斯方块、弹球等许多种,个个都还蛮有意思的~
如此极具创造力的作者,实在令人佩服,有兴趣的话,可以到其主页深入了解一下:
https://github.com/nuno-faria
本文转自:量子位,作者郭一璞

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!


​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典

Cufflinks实战教程—1行python代码就可实现炫酷可视化

作者:python数据分析之禅

来源:小dull鸟

之前画图一直在用matlibplot、pyecharts,最近学习了一个新的可视化库–cufflinks,用了两天我已经深深爱上它了

主要是因为它用法简单、图形漂亮、代码量少,用一两行代码,就能画出非常漂亮的图形

下面我们一起来看看吧!

1.用法简单

cufflinks库主要和dataFrame数据结合使用,绘图函数就是 dataFrame.iplot,记住这个就行了,但是 iplot 函数里的参数很多,一些参数说明如下:

1. kind:图的种类,如 scatter、pie、histogram 等
2. mode:lines、markers、lines+markers,分别表示折线、点、折线和点
3. colors:轨迹对应的颜色
4. dash:轨迹对应的虚实线,solid、dash、dashdot 三种
5. width:轨迹的粗细
6. xTitle:横坐标名称
7. yTitle:纵坐标的名称
8. title:图表的标题

如下图,df为随机生成的dataFrame数据,kind=’bar’表示柱状图,title代表标题,xTitle命名X轴,yTitle命名Y轴:

import pandas as pd
import numpy as np
import cufflinks as cf
df=pd.DataFrame(np.random.rand(124), columns=['a''b''c''d'])
df.iplot(kind ='bar',title='示例', xTitle = 'X轴', yTitle ='Y轴')

2.少量代码就能画出非常漂亮的图形

cufflinks为我们提供了丰富的主题样式,支持包括polar、pearl、henanigans、solar、ggplot、space和white等7种主题。

折线图

cf.datagen.lines(4,10).iplot(mode='lines+markers',theme='solar')

cufflinks使用datagen生成随机数,figure定义为lines形式,cf.datagen.lines(2,10)的具体形式如下:

cf.datagen.lines(2,10)  #2代表2组,10代表10天
  WCB.EH OAA.CQ
2015-01-01 -0.052580 -0.351618
2015-01-02 1.056254 -1.476417
2015-01-03 0.078017 1.129168
2015-01-04 0.282141 0.908655
2015-01-05 0.960537 -0.223996
2015-01-06 1.420355 0.212851
2015-01-07 2.266144 0.358502
2015-01-08 0.008034 1.086130
2015-01-09 1.876946 2.226895
2015-01-10 1.855625 2.852383

散点图

df = pd.DataFrame(np.random.rand(504), columns=['a''b''c''d'])
df.iplot(kind='scatter',mode='markers',colors=['orange','teal','blue','yellow'],size=20,theme='solar')

气泡图

df.iplot(kind='bubble',x='a',y='b',size='c',theme='solar')

subplots 子图

df=cf.datagen.lines(4)
df.iplot(subplots=True,shape=(4,1),shared_xaxes=True,vertical_spacing=.02,fill=True,theme='ggplot')

箱形图

cf.datagen.box(20).iplot(kind='box',legend=False,theme='ggplot')

 

直方图

df.iloc[:,0:3].iplot(kind='histogram')

 

3D图

cf.datagen.scatter3d(5,4).iplot(kind='scatter3d',x='x',y='y',z='z',text='text',categories='categories')

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!


​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典

Folium — 可能是 Python 最强的绘制地图神器

今天给大家介绍一个非常 NB 的Python 库,专门用来绘制地图的,它叫 Folium.

1. Folium简介

Folium是一个基于leaflet.js的Python地图库,其中,Leaflet是一个非常轻的前端地图可视化库。

即可以使用Python语言调用Leaflet的地图可视化能力。它不单单可以在地图上展示数据的分布图,还可以使用Vincent/Vega在地图上加以标记。

Folium可以让你用Python强大生态系统来处理数据,然后用Leaflet地图来展示。

开始之前,你要确保Python和pip已经成功安装在电脑上,如果没有,请访问这篇文章:超详细Python安装指南 进行安装。

(可选1) 如果你用Python的目的是数据分析,可以直接安装Anaconda:Python数据分析与挖掘好帮手—Anaconda,它内置了Python和pip.

(可选2) 此外,推荐大家用VSCode编辑器来编写小型Python项目:Python 编程的最好搭档—VSCode 详细指南

Windows环境下打开Cmd(开始—运行—CMD),苹果系统环境下请打开Terminal(command+空格输入Terminal),输入命令安装依赖:

2. Folium的使用

地图的生成

img

folium.folium.Map()详解

folium.folium.Map(location=None, width='100%', height='100%', left='0%', top='0%', position='relative', tiles='OpenStreetMap', attr=None, min_zoom=0, max_zoom=18, zoom_start=10, min_lat=-90, max_lat=90, min_lon=-180, max_lon=180, max_bounds=False, crs='EPSG3857', control_scale=False, prefer_canvas=False, no_touch=False, disable_3d=False, png_enabled=False, zoom_control=True, **kwargs)

参数说明

  • location (tuple or list, default None):纬度和经度

  • width (pixel int or percentage string (default: ‘100%’)):地图宽度

  • height (pixel int or percentage string (default: ‘100%’)):地图高度

  • tiles (str, default ‘OpenStreetMap’) :瓦片名称或使用TileLayer classass.

  • min_zoom (int, default 0):地图可缩放的最小级别

  • max_zoom (int, default 18):地图可缩放的最大级别

  • zoom_start (int, default 10) :地图的初始缩放级别

  • attr (string, default None):当使用自定义瓦片时,传入自定义瓦片的名词

  • crs (str, default ‘EPSG3857’) :投影坐标系标识

  • EPSG3857: Web墨卡托投影后的平面地图,坐标单位为米。大部分国外地图使用的时该标准。

  • EPSG4326: Web墨卡托投影后的平面地图,但仍然使用WGS84的经度、纬度表示坐标。

  • EPSG3395: 墨卡托投影,主要用于航海图

  • Simple: 简单的x,y匹配,用于自定义瓦片(比如游戏地图)

  • control_scale (bool, default False) :是否在地图上显示缩放标尺

  • prefer_canvas (bool, default False):强制使用Canvas渲染

  • no_touch (bool, default False) :是否允许触摸事件

  • disable_3d (bool, default False) :强制使用CSS 3D效果

  • zoom_control (bool, default True) :是否要限制zoom操作

  • **kwargs:Leaflets地图类的其他参数: https://leafletjs.com/reference-1.5.1.html#map

“tiles”参数可选值:

  • “OpenStreetMap”

  • “Mapbox Bright” (Limited levels of zoom for free tiles)

  • “Mapbox Control Room” (Limited levels of zoom for free tiles)

  • “Stamen” (Terrain, Toner, and Watercolor)

  • “Cloudmade” (Must pass API key)

  • “Mapbox” (Must pass API key)

  • “CartoDB” (positron and dark_matter)

“tiles”的自定义设置:

 

img

地球上同一个地理位置的经纬度,在不同的坐标系中,会有少量偏移,国内目前常见的坐标系主要分为三种:

  • 地球坐标系——WGS84:常见于GPS设备,Google地图等国际标准的坐标体系。

  • 火星坐标系——GCJ-02:中国国内使用的被强制加密后的坐标体系,高德坐标就属于该种坐标体系。

  • 百度坐标系——BD-09:百度地图所使用的坐标体系,是在火星坐标系的基础上又进行了一次加密处理。

所以在设置“tiles”时需要考虑目前手中得经纬度属于那种坐标系。

由于投影坐标系中没有GCJ-02和BD-09对应的标识,所以在自定义瓦片时主要经纬度能匹配上,crs中的设置可保持不变。更多详情介绍请看:瓦片坐标系学习

如果需要将地图保存,只需执行:m.save(“map.html”) 即可。

添加点、线、面要素

添加点

import folium
m = folium.Map(location=[39.917834116.397036], zoom_start=13, width='50%',height='50%', zoom_control='False',
               tiles='http://webrd02.is.autonavi.com/appmaptile?lang=zh_cn&size=1&scale=1&style=8&x={x}&y={y}&z={z}&ltype=6',attr='AutoNavi')

tooltip ='请点击我查看该点信息'
folium.Marker([39.937282,116.403187], popup='南锣鼓巷',tooltip=tooltip).add_to(m)
folium.Marker([39.917834,116.397036], popup='故宫',tooltip=tooltip).add_to(m)
folium.Marker([39.928614,116.391746], popup='北海公园', tooltip=tooltip, icon=folium.Icon(color='red')).add_to(m)
folium.Marker([39.942143,116.382590], popup='后海公园', tooltip=tooltip, icon=folium.Icon(color='green', prefix='fa', icon='taxi')).add_to(m)

m

 

img

Folium.Icon类可以设置color, icon_color, icon, angle, prefix这5个参数:

  • color的可选项包括:[‘red’, ‘blue’, ‘green’, ‘purple’, ‘orange’, ‘darkred’, ‘lightred’, ‘beige’, ‘darkblue’, ‘darkgreen’, ‘cadetblue’, ‘darkpurple’, ‘white’, ‘pink’, ‘lightblue’, ‘lightgreen’, ‘gray’, ‘black’, ‘lightgray’] ,或者HTML颜色代码

  • icon_color同上

  • icon可以在Font-Awesome网站中找到对应的名字,并设置prefix参数为’fa’

  • angle以度为单位设置

其他:

m.add_child(folium.LatLngPopup()) #显示鼠标点击点经纬度
m.add_child(folium.ClickForMarker(popup='Waypoint')) # 将鼠标点击点添加到地图上

添加圆

folium.Circle(
    radius=300,
    location=[39.928614,116.391746],
    popup='北海公园',
    color='crimson',
    fill=False,
).add_to(m)
folium.CircleMarker(
    location=[39.942143,116.382590],
    radius=50,
    popup='后海公园',
    color='#3186cc',
    fill=True,
    fill_color='#3186cc'
).add_to(m)

 

img

Circle和CircleMarker的不同:CircleMarker的radius一个单位是像素,Circle的一个单位时米

添加线段

folium.PolyLine([
    [39.917834,116.397036],
    [39.928614,116.391746],
    [39.937282,116.403187],
    [39.942143,116.382590]
],color='red').add_to(m)

 

img

添加多边形

folium.Marker([39.917834,116.397036], popup='故宫').add_to(m)
folium.Marker([39.928614,116.391746], popup='北海公园').add_to(m)
folium.Marker([39.937282,116.403187], popup='南锣鼓巷').add_to(m)
folium.Marker([39.942143,116.382590], popup='后海公园').add_to(m)

folium.Polygon([
    [39.917834,116.397036],
    [39.928614,116.391746],
    [39.942143,116.382590],
    [39.937282,116.403187],
],color='blue', weight=2, fill=True, fill_color='blue', fill_opacity=0.3).add_to(m)

 

img

Folium的其他高级应用

在地图上显示前200条犯罪数据

import folium
import pandas as pd

san_map = folium.Map(location=[37.77-122.42], zoom_start=12,width='50%',height='50%')

# cdata = pd.read_csv('https://cocl.us/sanfran_crime_dataset')
cdata = pd.read_csv('Police_Department_Incidents_-_Previous_Year__2016_.csv'#犯罪数据,包含犯罪所在经纬度

# get the first 200 crimes in the cdata
limit = 200
data = cdata.iloc[0:limit, :]
# Instantiate a feature group for the incidents in the dataframe
incidents = folium.map.FeatureGroup()
# Loop through the 200 crimes and add each to the incidents feature group
for lat, lng, in zip(cdata.Y, data.X):
    incidents.add_child(
        folium.CircleMarker(
            [lat, lng],
            radius=7# define how big you want the circle markers to be
            color='yellow',
            fill=True,
            fill_color='red',
            fill_opacity=0.4
        )
    )

san_map.add_child(incidents)

 

img

统计区域犯罪总数

from folium import plugins

# let's start again with a clean copy of the map of San Francisco
san_map = folium.Map(location=[37.77-122.42], zoom_start=12,width='50%',height='50%')

# instantiate a mark cluster object for the incidents in the dataframe
incidents = plugins.MarkerCluster().add_to(san_map)

# loop through the dataframe and add each data point to the mark cluster
for lat, lng, label, in zip(data.Y, data.X, cdata.Category):
    folium.Marker(
        location=[lat, lng],
        icon=None,
        popup=label,
    ).add_to(incidents)

# add incidents to map
san_map.add_child(incidents)

 

img

以热力图的方式呈现

from folium.plugins import HeatMap

san_map = folium.Map(location=[37.77-122.42], zoom_start=12,width='50%',height='50%')

# Convert data format
heatdata = data[['Y','X']].values.tolist()

# add incidents to map
HeatMap(heatdata).add_to(san_map)

san_map

 

img

在地图上呈现GeoJSON边界数据

import json
import requests

# url = 'https://cocl.us/sanfran_geojson'
url = 'san-francisco.geojson'
san_geo = f'{url}'
san_map = folium.Map(location=[37.77-122.42], zoom_start=12,width='50%',height='50%')
folium.GeoJson(
    san_geo,
    style_function=lambda feature: {
        'fillColor''#ffff00',
        'color''blue',
        'weight'2,
        'dashArray''5, 5'
    }
).add_to(san_map)

san_map

 

img

在GeoJSON上绘制Choropleth分级着色图

# Count crime numbers in each neighborhood
disdata = pd.DataFrame(cdata['PdDistrict'].value_counts())
disdata.reset_index(inplace=True)
disdata.rename(columns={'index':'Neighborhood','PdDistrict':'Count'},inplace=True)

san_map = folium.Map(location=[37.77-122.42], zoom_start=12,width='50%',height='50%')

folium.Choropleth(
    geo_data=san_geo,
    data=disdata,
    columns=['Neighborhood','Count'],
    key_on='feature.properties.DISTRICT',
    #fill_color='red',
    fill_color='YlOrRd',
    fill_opacity=0.7,
    line_opacity=0.2,
    highlight=True,
    legend_name='Crime Counts in San Francisco'
).add_to(san_map)

san_map

 

img

3. 各地图提供商瓦片服务地图规则

高德地图

目前高德的瓦片地址有如下两种:

  • http://wprd0{1-4}.is.autonavi.com/appmaptile?x={x}&y={y}&z={z}&lang=zh_cn&size=1&scl=1&style=7&ltype=1

  • http://webst0{1-4}.is.autonavi.com/appmaptile?style=7&x={x}&y={y}&z={z}

前者是高德的新版地址,后者是老版地址。

高德新版的参数:

  • lang:可以通过zh_cn设置中文,en设置英文

  • size:基本无作用

  • scl:瓦片尺寸控制,1=256,2=512

  • style:设置影像和路网,style=6为卫星图,style=7为街道图,style=8为标注图

  • ltype:线性控制,增加后,只对地图要素进行控制,没有文字注记,要素多少,是否透明

这些规律并不是绝对的,有可能有的组合某些参数不起作用。

谷歌地图

目前谷歌的瓦片地址也存在两种:

  • 国内:http://mt{0-3}.google.cn/vt/lyrs=m&hl=zh-CN&gl=cn&x={x}&y={y}&z={z}

  • 国外:http://mt{0-3}.google.com/vt/lyrs=m&hl=zh-CN&gl=cn&x={x}&y={y}&z={z}

参数详解:

  • lyrs = 类型

  • h = roads only 仅限道路

  • m = standard roadmap 标准路线图

  • p = terrain 带标签的地形图

  • r = somehow altered roadmap 某种改变的路线图

  • s = satellite only 仅限卫星

  • t = terrain only 仅限地形

  • y = hybrid 带标签的卫星图

  • gl = 坐标系

  • CN = 中国火星坐标系

  • hl = 地图文字语言

  • zh-CN = 中文

  • en-US = 英文

  • x = 瓦片横坐标

  • y = 瓦片纵坐标

  • z = 缩放级别 卫星图0-14,路线图0-17

百度地图

百度当前的瓦片地址:

  • http://online{0-4}.map.bdimg.com/onlinelabel/?qt=tile&x={x}&y={y}&z={z}&styles=pl&udt=202004151&scaler=2&p=0

  • http://api{0-3}.map.bdimg.com/customimage/tile?&x={x}&y={y}&z={z}&udt=20180601&scale=1

  • http://its.map.baidu.com:8002/traffic/TrafficTileService?level={z}&x={x}&y={y}&time=1373790856265&label=web2D&;v=017

备注:瓦片地址中的x和y对应的并不是经纬度值,而是瓦片编号,中国主要地图商的瓦片编号流派:

目前百度的瓦片编号比较特殊,Folium暂不支持。

其他参考资料:

  • https://github.com/geometalab/pyGeoTile

  • https://github.com/anzhihun/OpenLayers3Primer/blob/master/ch05/05-03.md

  • http://www.winseliu.com/blog/2018/01/30/map-started-guide/

  • https://github.com/CntChen/tile-lnglat-transform

腾讯地图

腾讯地图的瓦片地图URL格式:

  • http://rt1.map.gtimg.com/realtimerender?z={z}&x={x}&y={y}&type=vector&style=0

由于腾讯地图使用的瓦片编码时TMS,所以使用时需要额外的设置。具体如下:

 

其他底图

 

  • {0,1,2,3}代表了url的subDomain,在请求时会随机的在url中使用mt0、mt1、mt2、mt3。{z}代表zoom,即缩放级别,{x}代表列号,{y}代表行号。

  • GeoQ 官网有公开的多个基于 ArcGIS 的地图服务,均可使用,详见https://map.geoq.cn/arcgis/rest/services

4. 参考链接:

  • https://leafletjs.com/

  • https://python-visualization.github.io/folium/

  • http://openwhatevermap.xyz/

作者:钱魏Way
原文:https://www.biaodianfu.com/folium.html

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!


​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典

Python 将你的照片转化为“速写”

Photo-Sketching 一个能将照片的轮廓识别出来并将其转化为“速写”型图像的开源模块。

比如,这只小狗:

经过模型的转化,会变成卡通版的小狗:

当然,也不是什么照片都处理的好,比如这个风景画就不行:

摇身一变,成了抽象风格:

非常好,这很人工智能。

这个模块的使用也相对简单,下面给大家带上全方面的教程:

1.虚拟环境及依赖安装

这个项目推荐大家直接用Anaconda进行环境的构建和开发:Python数据分析与挖掘好帮手—Anaconda,因为作者提供了一个 environment.yml 文件,你只需要输入以下命令,就能一键安装环境和依赖:

conda env create -f environment.yml

此外,推荐大家用VSCode编辑器来编写像这样的小型Python项目:Python 编程的最好搭档—VSCode 详细指南

2.下载预训练模型

作者已经训练好了一些识别模型方便大家使用,可以在下列地址找到:
https://drive.google.com/file/d/1TQf-LyS8rRDDapdcTnEgWzYJllPgiXdj/view

作者使用的是谷歌硬盘,如果你无法科学上网,可以使用我提供的完整源代码+预训练模型,在后台回复:sketch 即可获取。

下载完成后解压文件,将 latest_net_D.pth 和 latest_net_G.pth 放置到 Checkpoints 文件夹下:

3.运行预训练模型

接下来,我们需要修改使用预训练模型的启动脚本,这些脚本都放在 PhotoSketch\scripts 下,我们需要使用的是 test_pretrained.cmd 或者 test_pretrained.sh 这两个脚本。

如果你是 windows 系统,请修改 test_pretrained.cmd 脚本,重点是dataDir、results_dir、checkpoints_dir:

dataDir 指向到 PhotoSketch 所在的文件夹目录,如果你是跟我一样这么配的,results_dir 只需要配成 %dataDir%\PhotoSketch\Results\ 即可,checkpoints_dir 则为 %dataDir%\PhotoSketch\Checkpoints\

如果你是macOS或者Linux,则修改 test_pretrained.sh 文件,修改方法与上面windows 的一样,只不过 反斜杠 “\” 要换成 斜杆 “/” 。

修改完脚本后,打开命令行/终端,输入以下命令,就会将你 PhotoSketch\examples 目录下的文件转化为“速写”。

windows:

scripts\test_pretrained.cmd

Linux/Macos:

./scripts/test_pretrained.sh

转化结果可以在 PhotoSketch\Results 中看到,如下两图所示。

待转化目录:

转化后:

可以看到效果其实不是非常好,由于是作者预训练的模型,所以效果不好也正常,如果大家需要的话,可以自己针对性地拿一些图像训练模型,并针对性地做识别,这样做效果才是最好的。

你需要训练或测试自己的模型也非常简单:

  • 在仓库的根目录中,运行 scripts/train.sh 可以训练模型
  • 在仓库的根目录中,运行 scripts/test.sh 可以测试val集或测试集

当然训练过程肯定没这么简单,你会遇到不少问题,但是我相信大部分都是存放图片的目录结构上的问题,大家如果有兴趣可以动手试试。

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!


​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典

表白神器!使用 Python PIL 库绘制爱心墙!

 

一、爱心墙

通过爬虫搜集到粉丝的头像,然后利用 PIL 库拼接出爱心墙的形状

二、代码分析

1.头像爬取

在个人中心点击我的粉丝便可以看到自己的粉丝

通过抓包可知对应的接口为:

url = 'https://me.csdn.net/api/relation/index?pageno=1&pagesize=20&relation_type=fans' # 接口地址

那么,可以定义一个函数来获取粉丝的信息:

def get_fansInfo():
    '''
    获取粉丝相关信息
    '''

    url = 'https://me.csdn.net/api/relation/index?pageno=%d&pagesize=%d&relation_type=fans' # 接口地址
    cookies = {} # 用户登陆cookies
    headers = {  # 请求头
        'User-Agent''Mozilla/5.0 (Windows NT 6.3; Win64; x64; rv:81.0) Gecko/20100101 Firefox/81.0',
        'Accept''application/json, text/plain, */*',
        'Accept-Language''zh-CN,zh;q=0.8,zh-TW;q=0.7,zh-HK;q=0.5,en-US;q=0.3,en;q=0.2',
        'Referer''https://i.csdn.net/',
        'Origin''https://i.csdn.net',
        'Connection''keep-alive',
        'TE''Trailers',
    }
    # 获取粉丝总数
    res = requests.get(url%(1,10),headers=headers,cookies=cookies)
    res_json = res.json()
    N_fans = res_json['data']['data_all']
    print('一共有%d个粉丝'%N_fans)
    # 获取全部粉丝数据
    res = requests.get(url%(1,N_fans),headers=headers,cookies=cookies)
    res_json = res.json()
    return res_json

在返回的数据中,包括一个avatar字段,这个就是用户的头像地址

拿到头像地址之后便可以定义个函数来下载相应的头像:

def download_avatar(username,url):
    '''
    下载用户头像
    '''

    savePath = './avatars' # 头像存储目录
    res = requests.get(url)
    with open('%s/%s.jpg'%(savePath,username),'wb'as f:
        f.write(res.content)

定义主函数,运行代码:

if __name__ == '__main__':
    fans = get_fansInfo()
    for f in fans['data']['list']:
        username = f['fans'# 用户名
        url = f['avatar']    # 头像地址
        download_avatar(username,url)
        print('用户"%s"头像下载完成!'%username)

最后我成功将所有头像下载到本地文件夹中:

2.头像去重

聪明的你应该已经发现,在爬取到的头像中有两个头像重复出现(想必这应该是官方默认头像):

 

 

 

于是乎,为了更好地展示,我们得对头像进行去重

这里我们利用每个头像的 MD5 值来进行去重,然后定义函数来计算头像的 MD5 值

def get_md5(filename):
    '''
    获取文件的md5值cls
    '''

    m = hashlib.md5()
    with open(filename,'rb'as f:
        for line in f:
            m.update(line)
    md5 = m.hexdigest()
    return md5

说明:每个文件通过 MD5 计算出摘要,理论来说只有文件完全一致 MD5 值才会相同。因此,可以利用它来进行图像的去重

对头像进行去重,并把去重后的头像保存到另外的目录中:

# 照片去重
md5_already = [] # 用于存储已经记录过的图片,便于去重
for filename in os.listdir('./avatars'):
    md5 = get_md5('./avatars/'+filename)  
    if md5 not in md5_already:
        md5_already.append(md5)
        shutil.copyfile('./avatars/'+filename,'./avatars(dr)/'+filename)

3.绘制爱心墙

这一步,主要是利用 PIL 库来把头像按照设定的框架拼接成一个更大的图片

首先导入相关库:

import os
import random
import numpy as np
import PIL.Image as Image

定义绘制图形的框架(用二维数组表示):

FRAME = [[0,1,1,0,0,0,0,1,1,0],
         [1,1,1,1,0,0,1,1,1,1],
         [1,1,1,1,1,1,1,1,1,1],
         [1,1,1,1,1,1,1,1,1,1],
         [0,1,1,1,1,1,1,1,1,0],
         [0,0,1,1,1,1,1,1,0,0],
         [0,0,0,1,1,1,1,0,0,0],
         [0,0,0,0,1,1,0,0,0,0]]

这里大家完全可以发挥自己的想象,画你心中所想

其中,0 表示不进行填充,1 表示用头像进行填充。

定义相关参数,包括每张用于填充的头像的大小、每个点位填充的次数等

# 定义相关参数
SIZE = 50 # 每张图片的尺寸为50*50
N = 2     # 每个点位上放置2*2张图片

# 计算相关参数
width = np.shape(FRAME)[1]*N*SIZE  # 照片墙宽度
height = np.shape(FRAME)[0]*N*SIZE # 照片墙高度
n_img = np.sum(FRAME)*(N**2)       # 照片墙需要的照片数
filenames = random.sample(os.listdir('./avatars(dr)'),n_img) # 随机选取n_img张照片
filenames = ['./avatars(dr)/'+f for f in filenames]

遍历 FRAME,用头像对背景图片进行填充:

# 绘制爱心墙
img_bg = Image.new('RGB',(width,height)) # 设置照片墙背景
i = 0
for y in range(np.shape(FRAME)[0]):
    for x in range(np.shape(FRAME)[1]):
         if FRAME[y][x] == 1# 如果需要填充
             pos_x = x*N*SIZE # 填充起始X坐标位置
             pos_y = y*N*SIZE # 填充起始Y坐标位置
             for yy in range(N):
                 for xx in range(N):
                     img = Image.open(filenames[i])
                     img = img.resize((SIZE,SIZE),Image.ANTIALIAS)
                     img_bg.paste(img,(pos_x+xx*SIZE,pos_y+yy*SIZE))
                     i += 1
                
# 保存图片
img_bg.save('love.jpg')

写在最后

天气逐渐微寒,愿这次小小的表白可以给你们带来些许暖意;愿风雨兼程,不忘归途;愿身能似月亭亭,千里伴君行!

转自AirPython.

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!


​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典

Python Pyecharts 可视化轻松展示交通拥堵情况

就在今天,我感受到了来自堵车的深深恶意。没有错!我今天被堵在路上近乎3个小时,美好的约会就这样化为泡影了。

我倒还真想看看这路到底能有多堵。于是,我爬取了各城市的拥堵数据,并将它们可视化:

特别说明:由于数据具有实时性,画图时已经过了高峰期,于是图上一片绿油油也并不奇怪。有感兴趣的客官,您接着往下看,待我给您慢慢分解。(ps.涉及到爬虫pyechartsflask等)

一、爬取拥堵指数

某度智慧交通提供了各个城市的拥堵指数的数据,我们只需要通过几行代码便可轻松抓取:

# 获取各城市的拥堵指数  
url = 'https://jiaotong.baidu.com/trafficindex/city/list' # 接口api  
res = requests.get(url)  
data = res.json()  

其中,url为获取数据的接口地址,通过简单的抓包分析便能知道。而data为返回后的数据,它包括很多字段,但是我们只需要提取其中的城市名拥堵指数即可:

# 提取数据  
citys = [i['cityname'for i in data['data']['list']] # 提取城市  
indexs = [float(i['index']) for i in data['data']['list']] # 提取对应的指数  

有了数据,接下来我们就可以将其可视化展示出来。

二、数据可视化

利用可视化神器pyecharts库绘制地图,并将城市以及对应的拥堵指数表示出来。其安装如下:

pip install pyecharts  

部分版本需要再安装额外的地图库,方法如下:

pip install echarts-countries-pypkg  
pip install echarts-cities-pypkg  
pip install echarts-china-provinces-pypkg   
pip install echarts-china-cities-pypkg  

首先定义地图:

geo = Geo()  
geo.add_schema(maptype = 'china'# 加入中国地图  

添加数据并进行相关设置:

geo.add('各城市拥堵指数', zip(citys,indexs), type_ = 'effectScatter'# 设置地图类型及数据  
geo.set_series_opts(label_opts = opts.LabelOpts(is_show = False))  #设置是否显示标签  

根据拥堵指数的大小进行分类,分别为畅通、缓行、拥堵、严重拥堵:

geo.set_global_opts(visualmap_opts = opts.VisualMapOpts(  
                    #max_ = 2.5, # 用于连续表示  
                    is_piecewise = True# 是否分段  
                    pieces = [{'min':1.0,'max':1.5,'label':'畅通','color':'#16CE95'},  
                              {'min':1.5,'max':1.8,'label':'缓行','color':'#F79D06'},  
                              {'min':1.8,'max':2.0,'label':'拥堵','color':'#D80304'},  
                              {'min':2.0,'max':2.5,'label':'严重拥堵','color':'#8F0921'}])) # 设置图例显示  

最后将地图保存在本地:

geo.render(path='各城市拥堵指数.html')  

到这里,我们就得到了文章一开始看到的那张图~

然而,由于拥堵数据是实时变化的,如果我每次都要去运行一次代码岂不是很麻烦?

很显然,机智的社会主义青年是不会这么做的,您接着往下看。

三、搭建展示网站

为了更加方便地将各城市拥堵情况展示出来,我决定搭建一个用于展示的网站。方法可以是各式各样的,在这里我选择了利用flask框架,简单快捷,完整代码回复堵车获得:

代码中,get_geo()为获取地图的函数,返回了pyecharts绘制的地图。在当前目录下创建templates文件夹,并创建模块文件geo.html,如下:

<!DOCTYPE html>  
<html>  
  
<head>  
    <meta charset="utf-8">  
    <title>各城市交通拥堵指数</title>  
</head>  
  
<body>  
  {{mygeo|safe}}  
</body>  
  
</html>  

至此,访问网站地址即可看到绘制的拥堵情况地图~

本文转自快学Python.

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!


​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典

Python 漂亮的新型绘图库 — PyG2Plot 实战教程

最近看了一篇文章《一个牛逼的Python 可视化库:PyG2Plot》,可惜只是简单介绍,并且只有一个简陋的官方示例。

经过小五一番测试成功复现了其中一个示例图片,还很精致。今天正好把完整过程分享给大家,看看这个新库绘图也可以这么漂亮!

Python可视化新秀

这个Python可视化新秀,在GitHub上是这样介绍的:

🎨 PyG2Plot 是@AntV/G2Plot 在 Python3 上的封装。G2Plot 是一套简单、易用、并具备一定扩展能力和组合能力的统计图表库,基于图形语法理论搭建而成。

不过研究PyG2Plot还得先从G2开始讲,它是蚂蚁金服开源一个基于图形语法,面向数据分析的统计图表引擎。后来又在其基础上,封装出业务上常用的统计图表库——G2Plot

不过现在Python这么热,几乎每一个nb的前端可视化库,最终都会被用python开发一套生成相应html的库!它也不例外,封装出了Python可视化库——PyG2Plot

在GitHub上,也提供了一张示例图,我对右下角的散点图比较感兴趣。

结果兴致勃勃地去看示例,这简直买家秀与卖家秀啊!

我不管,我就要右边那个👉

自己动手,丰衣足食

看来还是需要自己动手,那就先安装PyG2Plot库吧

pip install pyg2plot

目前目前 pyg2plot 只提供简单的一个 API,只列出需要的参数

  • Plot
  1. Plot(plot_type: str): 获取 Plot 对应的类实例。
  2. plot.set_options(options: object): 给图表实例设置一个 G2Plot 图形的配置。
  3. plot.render(path, env, **kwargs): 渲染出一个 HTML 文件,同时可以传入文件的路径,以及 jinja2 env 和 kwargs 参数。
  4. plot.render_notebook(env, **kwargs): 将图形渲染到 jupyter 的预览。

于是我们可以先导入Plot方法

from pyg2plot import Plot

我们要画散点图

scatter = Plot("Scatter")

下一步就是要获取数据和设置参数plot.set_options(),这里获取数据直接利用requset解析案例json,而参数让我在后面一一道来:

import requests

#请求地址
url = "https://gw.alipayobjects.com/os/bmw-prod/0b37279d-1674-42b4-b285-29683747ad9a.json"

#发送get请求
a = requests.get(url)

#获取返回的json数据,并赋值给data
data = a.json()

成功获取解析好的对象集合数据。

下面是对着参数,一顿操作猛如虎:

scatter.set_options(
{
    'appendPadding'30,
    'data': data,
    'xField''change in female rate',
    'yField''change in male rate',
    'sizeField''pop',
    'colorField''continent',
    'color': ['#ffd500''#82cab2''#193442''#d18768','#7e827a'],
    'size': [430],
    'shape''circle',
    'pointStyle':{'fillOpacity'0.8,'stroke''#bbb'},
    'xAxis':{'line':{'style':{'stroke''#aaa'}},},
    'yAxis':{'line':{'style':{'stroke''#aaa'}},},
    'quadrant':{
        'xBaseline'0,
        'yBaseline'0,
        'labels': [
        {'content''Male decrease,\nfemale increase'},
        {'content''Female decrease,\nmale increase'},
        {'content''Female & male decrease'},
        {'content''Female &\n male increase'}, ],},
})

如果在Jupyter notebook中预览的话,则执行下方语句

scatter.render_notebook()

如果想渲染出完整的html的话,则执行下方语句

scatter.render("散点图.html")

看一下成果吧

参数解析&完整代码

各位看官,这块可能比较无聊,可以直接划到文末或者点击收藏。

主要还是详解一下刚才scatter.set_options()里的参数,方便大家后续自己改造!

分成几个部分一点一点解释:

参数解释 一

'appendPadding'30#①
'data': data, #②
'xField''change in female rate'#③
'yField''change in male rate'

① 图表在上右下左的间距,加不加这个参数具体看下图

② 设置图表数据源(其中data在前面已经赋值了),这里的数据源为对象集合,例如:[{ time: ‘1991’,value: 20 }, { time: ‘1992’,value: 20 }]。

xFieldyField这两个参数分别是横/纵向的坐标轴对应的字段。

参数解释 二

'sizeField''pop'#④
'colorField''continent'#⑤
'color': ['#ffd500''#82cab2''#193442''#d18768','#7e827a'], #⑥
'size': [430], #⑦
'shape''circle'#⑧

④ 指定散点大小对应的字段名,我们用的pop(人口)字段。

⑤ 指定散点颜色对应的字段名,我们用的continent(洲)字段。

⑥ 设置散点的颜色,指定了系列色值。

⑦ 设置散点的大小,可以指定大小数组 [minSize, maxSize]

⑧ 设置点的形状,比如ciclesquare

参数解释 三

'pointStyle':{'fillOpacity'0.8,'stroke''#bbb'}, #⑨
'xAxis':{'line':{'style':{'stroke''#aaa'}},}, #⑩
'yAxis':{'line':{'style':{'stroke''#aaa'}},},

pointStyle是指折线样式,不过在散点图里,指的是散点的描边。另外fillOpacity是设置透明度,stroke是设置描边颜色。

⑩ 这里只是设置了坐标轴线的颜色。

参数解释 四

'quadrant':{
    'xBaseline'0,
    'yBaseline'0,
    'labels': [
    {'content''Male decrease,\nfemale increase'},
    {'content''Female decrease,\nmale increase'},
    {'content''Female & male decrease'},
    {'content''Female &\n male increase'}, ],},

quadrant是四象限组件,具体细分配置如下:

细分配置 功能描述
xBaseline x 方向上的象限分割基准线,默认为 0
yBaseline y 方向上的象限分割基准线,默认为 0
labels 象限文本配置

PyG2Plot的介绍文档还不完善,上文中的很多参数是摸索的,大家作为参考就好。

PyG2Plot 原理其实非常简单,其中借鉴了 pyecharts 的实现,但是因为蚂蚁金服的 G2Plot 完全基于可视分析理论的配置式结构,所以封装上比 pyecharts 简洁非常非常多。

本文转自快学Python.

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!


​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典

Python 一行语句算出每个省的面积—geopandas

教你如何用一行语句算出每个省的面积—Geopandas.

GeoPandas是一个基于pandas,针对地理数据做了特别支持的第三方模块。

它继承pandas.Series和pandas.Dataframe,实现了GeoSeries和GeoDataFrame类,使得其操纵和分析平面几何对象非常方便。

1.准备

开始之前,你要确保Python和pip已经成功安装在电脑上噢,如果没有,请访问这篇文章:超详细Python安装指南 进行安装。如果你用Python的目的是数据分析,可以直接安装Anaconda:Python数据分析与挖掘好帮手—Anaconda

Windows环境下打开Cmd(开始—运行—CMD),苹果系统环境下请打开Terminal(command+空格输入Terminal),准备开始输入命令安装依赖。

当然,我更推荐大家用VSCode编辑器,把本文代码Copy下来,在编辑器下方的终端运行命令安装依赖模块,多舒服的一件事啊:Python 编程的最好搭档—VSCode 详细指南。

由于geopandas涉及到许多第三方依赖,pip安装起来非常麻烦。因此在本教程中,我只推荐使用conda安装geopandas:

conda install geopandas

一行语句即可完成安装。

2.基本使用

设定坐标绘制简单的图形:

>>> import geopandas
>>> from shapely.geometry import Polygon
>>> p1 = Polygon([(0, 0), (1, 0), (1, 1)])
>>> p2 = Polygon([(0, 0), (1, 0), (1, 1), (0, 1)])
>>> p3 = Polygon([(2, 0), (3, 0), (3, 1), (2, 1)])
>>> g = geopandas.GeoSeries([p1, p2, p3])
>>> g
0    POLYGON ((0 0, 1 0, 1 1, 0 0))
1    POLYGON ((0 0, 1 0, 1 1, 0 1, 0 0))
2    POLYGON ((2 0, 3 0, 3 1, 2 1, 2 0))
dtype: geometry

这里有一个强大的用法,通过area属性,geopandas能直接返回这些图形的面积:

>>> print(g.area)
0    0.5
1    1.0
2    1.0
dtype: float64

不仅如此,通过plot属性函数,你还可以直接生成matplotlib图。

>>> g.plot()

通过matplot的pyplot,可以将图片保存下来:

import matplotlib.pyplot as plt
g.plot()
plt.savefig("test.png")

学会上面的基本用法, 我们就可以进行简单的地图绘制及面积的计算了。

3.绘制并算出每个省的面积

此外,它最大的亮点是可以通过fiona读取比如ESRI shapefile(一种用于存储地理要素的几何位置和属性信息的非拓扑简单格式)。

import geopandas
import matplotlib.pyplot as plt
from shapely.geometry import Polygon
maps = geopandas.read_file('1.shx')
# 读取的数据格式类似于
#                                             geometry
# 0   POLYGON ((1329152.341 5619034.278, 1323327.591...
# 1   POLYGON ((-2189253.375 4611401.367, -2202922.3...
# 2   POLYGON ((761692.092 4443124.843, 760999.873 4...
# 3   POLYGON ((-34477.046 4516813.963, -41105.128 4...
# ... ...
maps.plot()
plt.savefig("test.png")

如代码所示,通过read_file你可以读取shx、gpkg、geojson等数据。读取出来的图形如下:

同样滴,我这个shapefile是省级行政区的,每一个省级行政区都被划分为一个区块,因此可以一行语句算出每个省级行政区所占面积:

print(maps.area)
# 0     4.156054e+11
# 1     1.528346e+12
# 2     1.487538e+11
# 3     4.781135e+10
# 4     1.189317e+12
# 5     1.468277e+11
# 6     1.597052e+11
# 7     9.770609e+10
# 8     1.385692e+11
# 9     1.846538e+11
# 10    1.015979e+11
# ... ...

怎么样,是不是很酷?它还有许多更库的特性,欢迎阅读官方文档:
https://geopandas.readthedocs.io/

本文用到的shx格式省级行政区数据,可以在【Python实用宝典】公众号后台回复 省级行政区下载。​

我们的文章到此就结束啦,如果你喜欢今天的Python 实战教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!


​Python实用宝典 (pythondict.com)
不只是一个宝典
欢迎关注公众号:Python实用宝典

这10篇Python实战教程,你不学可能会后悔

1.Python 一键生成漂亮的生日快乐词云!

2.比PS还好用!Python实战20行代码批量抠图

3.Python实战教程 自动提取电影中所有人脸

4.Python实战教程 一键转化代码为流程图

5.手把手教你树莓派人脸识别开机的Python实战教程

6.人人都能懂的 Python 自动发送邮件实战教程

7.Python 五分钟绘制漂亮的系统架构图实战教程

8.瑞幸VS星巴克,谁的门店最多?Python实战教程告诉你

9.剪辑音乐要很久?3行语句Python实战瞬间搞定

10.Python 多种音乐格式批量转换实战教程

其实还有好多实战教程就不一一列出来了,毕竟Python实用宝典的原创数其实已经快300了。

大家可以在公众号历史页或者下方阅读原文访问Python实用宝典网。搜索自己想要阅读的关键词。


对了,如果你在实战的过程中有任何疑问,可以加我们的讨论群,里面有许多同学都能提供帮助:

我们的文章到此就结束啦,如果你喜欢我们今天的Python 实战教程,请持续关注我们,如果对你有帮助,麻烦在下面点一个赞/在看哦有任何问题都可以在下方留言区留言,我们都会耐心解答的!


​Python实用宝典 (pythondict.com)
不只是一个宝典
欢迎关注公众号:Python实用宝典