问题:遍历所有嵌套的字典值?
for k, v in d.iteritems():
if type(v) is dict:
for t, c in v.iteritems():
print "{0} : {1}".format(t, c)
我试图遍历字典并打印出所有值不是嵌套字典的键值对。如果值是字典,我想进入它并打印出它的键值对…等等。有什么帮助吗?
编辑
这个怎么样?它仍然只打印一件事。
def printDict(d):
for k, v in d.iteritems():
if type(v) is dict:
printDict(v)
else:
print "{0} : {1}".format(k, v)
完整的测试用例
字典:
{u'xml': {u'config': {u'portstatus': {u'status': u'good'}, u'target': u'1'},
u'port': u'11'}}
结果:
xml : {u'config': {u'portstatus': {u'status': u'good'}, u'target': u'1'}, u'port': u'11'}
for k, v in d.iteritems():
if type(v) is dict:
for t, c in v.iteritems():
print "{0} : {1}".format(t, c)
I’m trying to loop through a dictionary and print out all key value pairs where the value is not a nested dictionary. If the value is a dictionary I want to go into it and print out its key value pairs…etc. Any help?
EDIT
How about this? It still only prints one thing.
def printDict(d):
for k, v in d.iteritems():
if type(v) is dict:
printDict(v)
else:
print "{0} : {1}".format(k, v)
Full Test Case
Dictionary:
{u'xml': {u'config': {u'portstatus': {u'status': u'good'}, u'target': u'1'},
u'port': u'11'}}
Result:
xml : {u'config': {u'portstatus': {u'status': u'good'}, u'target': u'1'}, u'port': u'11'}
回答 0
如Niklas所说,您需要递归,即您想定义一个函数来打印您的字典,如果该值是一个字典,则想使用这个新字典来调用您的打印函数。
就像是 :
def myprint(d):
for k, v in d.items():
if isinstance(v, dict):
myprint(v)
else:
print("{0} : {1}".format(k, v))
As said by Niklas, you need recursion, i.e. you want to define a function to print your dict, and if the value is a dict, you want to call your print function using this new dict.
Something like :
def myprint(d):
for k, v in d.items():
if isinstance(v, dict):
myprint(v)
else:
print("{0} : {1}".format(k, v))
回答 1
如果您编写自己的递归实现或带有堆栈的迭代等效项,则可能会出现问题。请参阅以下示例:
dic = {}
dic["key1"] = {}
dic["key1"]["key1.1"] = "value1"
dic["key2"] = {}
dic["key2"]["key2.1"] = "value2"
dic["key2"]["key2.2"] = dic["key1"]
dic["key2"]["key2.3"] = dic
在正常情况下,嵌套字典将是像数据结构一样的n元树。但是定义不排除出现交叉边缘甚至后边缘的可能性(因此不再是树)。例如,这里key2.2从key1保留到字典,key2.3指向整个字典(后沿/循环)。当有后沿(循环)时,堆栈/递归将无限运行。
root<-------back edge
/ \ |
_key1 __key2__ |
/ / \ \ |
|->key1.1 key2.1 key2.2 key2.3
| / | |
| value1 value2 |
| |
cross edge----------|
如果您使用Scharron的此实现打印此词典
def myprint(d):
for k, v in d.items():
if isinstance(v, dict):
myprint(v)
else:
print "{0} : {1}".format(k, v)
您会看到此错误:
RuntimeError: maximum recursion depth exceeded while calling a Python object
senderle的实现也是如此。
同样,您可以从Fred Foo的此实现中获得无限循环:
def myprint(d):
stack = list(d.items())
while stack:
k, v = stack.pop()
if isinstance(v, dict):
stack.extend(v.items())
else:
print("%s: %s" % (k, v))
但是,Python实际上会检测嵌套字典中的循环:
print dic
{'key2': {'key2.1': 'value2', 'key2.3': {...},
'key2.2': {'key1.1': 'value1'}}, 'key1': {'key1.1': 'value1'}}
“ {…}”是检测到循环的位置。
根据Moondra的要求,这是一种避免循环(DFS)的方法:
def myprint(d):
stack = list(d.items())
visited = set()
while stack:
k, v = stack.pop()
if isinstance(v, dict):
if k not in visited:
stack.extend(v.items())
else:
print("%s: %s" % (k, v))
visited.add(k)
There are potential problems if you write your own recursive implementation or the iterative equivalent with stack. See this example:
dic = {}
dic["key1"] = {}
dic["key1"]["key1.1"] = "value1"
dic["key2"] = {}
dic["key2"]["key2.1"] = "value2"
dic["key2"]["key2.2"] = dic["key1"]
dic["key2"]["key2.3"] = dic
In the normal sense, nested dictionary will be a n-nary tree like data structure. But the definition doesn’t exclude the possibility of a cross edge or even a back edge (thus no longer a tree). For instance, here key2.2 holds to the dictionary from key1, key2.3 points to the entire dictionary(back edge/cycle). When there is a back edge(cycle), the stack/recursion will run infinitely.
root<-------back edge
/ \ |
_key1 __key2__ |
/ / \ \ |
|->key1.1 key2.1 key2.2 key2.3
| / | |
| value1 value2 |
| |
cross edge----------|
If you print this dictionary with this implementation from Scharron
def myprint(d):
for k, v in d.items():
if isinstance(v, dict):
myprint(v)
else:
print "{0} : {1}".format(k, v)
You would see this error:
RuntimeError: maximum recursion depth exceeded while calling a Python object
The same goes with the implementation from senderle.
Similarly, you get an infinite loop with this implementation from Fred Foo:
def myprint(d):
stack = list(d.items())
while stack:
k, v = stack.pop()
if isinstance(v, dict):
stack.extend(v.items())
else:
print("%s: %s" % (k, v))
However, Python actually detects cycles in nested dictionary:
print dic
{'key2': {'key2.1': 'value2', 'key2.3': {...},
'key2.2': {'key1.1': 'value1'}}, 'key1': {'key1.1': 'value1'}}
“{…}” is where a cycle is detected.
As requested by Moondra this is a way to avoid cycles (DFS):
def myprint(d):
stack = list(d.items())
visited = set()
while stack:
k, v = stack.pop()
if isinstance(v, dict):
if k not in visited:
stack.extend(v.items())
else:
print("%s: %s" % (k, v))
visited.add(k)
回答 2
由于a dict
是可迭代的,因此您只需稍作一些更改就可以将经典的嵌套容器可迭代公式应用于此问题。这是Python 2版本(请参阅下面的3):
import collections
def nested_dict_iter(nested):
for key, value in nested.iteritems():
if isinstance(value, collections.Mapping):
for inner_key, inner_value in nested_dict_iter(value):
yield inner_key, inner_value
else:
yield key, value
测试:
list(nested_dict_iter({'a':{'b':{'c':1, 'd':2},
'e':{'f':3, 'g':4}},
'h':{'i':5, 'j':6}}))
# output: [('g', 4), ('f', 3), ('c', 1), ('d', 2), ('i', 5), ('j', 6)]
在Python 2中,可能可以创建一个Mapping
限定为,Mapping
但不包含的自定义iteritems
,在这种情况下,这将失败。文档没有指出这iteritems
是必需的Mapping
;另一方面,源为Mapping
类型提供了一种iteritems
方法。因此,对于custom Mappings
,从collections.Mapping
显式继承以防万一。
在Python 3中,有许多改进。从Python 3.3开始,抽象基类存在于中collections.abc
。它们也保持collections
向后兼容,但是将我们的抽象基类放在一个命名空间中会更好。因此,这是abc
从导入的collections
。Python 3.3还添加了yield from
,它专门用于这种情况。这不是空的语法糖。它可能导致更快的代码和与协同程序更明智的交互。
from collections import abc
def nested_dict_iter(nested):
for key, value in nested.items():
if isinstance(value, abc.Mapping):
yield from nested_dict_iter(value)
else:
yield key, value
Since a dict
is iterable, you can apply the classic nested container iterable formula to this problem with only a couple of minor changes. Here’s a Python 2 version (see below for 3):
import collections
def nested_dict_iter(nested):
for key, value in nested.iteritems():
if isinstance(value, collections.Mapping):
for inner_key, inner_value in nested_dict_iter(value):
yield inner_key, inner_value
else:
yield key, value
Test:
list(nested_dict_iter({'a':{'b':{'c':1, 'd':2},
'e':{'f':3, 'g':4}},
'h':{'i':5, 'j':6}}))
# output: [('g', 4), ('f', 3), ('c', 1), ('d', 2), ('i', 5), ('j', 6)]
In Python 2, It might be possible to create a custom Mapping
that qualifies as a Mapping
but doesn’t contain iteritems
, in which case this will fail. The docs don’t indicate that iteritems
is required for a Mapping
; on the other hand, the source gives Mapping
types an iteritems
method. So for custom Mappings
, inherit from collections.Mapping
explicitly just in case.
In Python 3, there are a number of improvements to be made. As of Python 3.3, abstract base classes live in collections.abc
. They remain in collections
too for backwards compatibility, but it’s nicer having our abstract base classes together in one namespace. So this imports abc
from collections
. Python 3.3 also adds yield from
, which is designed for just these sorts of situations. This is not empty syntactic sugar; it may lead to faster code and more sensible interactions with coroutines.
from collections import abc
def nested_dict_iter(nested):
for key, value in nested.items():
if isinstance(value, abc.Mapping):
yield from nested_dict_iter(value)
else:
yield key, value
回答 3
替代迭代解决方案:
def myprint(d):
stack = d.items()
while stack:
k, v = stack.pop()
if isinstance(v, dict):
stack.extend(v.iteritems())
else:
print("%s: %s" % (k, v))
Alternative iterative solution:
def myprint(d):
stack = d.items()
while stack:
k, v = stack.pop()
if isinstance(v, dict):
stack.extend(v.iteritems())
else:
print("%s: %s" % (k, v))
回答 4
我写的版本略有不同,跟踪到达那里的过程中的按键
def print_dict(v, prefix=''):
if isinstance(v, dict):
for k, v2 in v.items():
p2 = "{}['{}']".format(prefix, k)
print_dict(v2, p2)
elif isinstance(v, list):
for i, v2 in enumerate(v):
p2 = "{}[{}]".format(prefix, i)
print_dict(v2, p2)
else:
print('{} = {}'.format(prefix, repr(v)))
在您的数据上,它将打印
data['xml']['config']['portstatus']['status'] = u'good'
data['xml']['config']['target'] = u'1'
data['xml']['port'] = u'11'
修改它以将前缀作为键的元组而不是字符串来跟踪前缀(如果您需要的话)也很容易。
Slightly different version I wrote that keeps track of the keys along the way to get there
def print_dict(v, prefix=''):
if isinstance(v, dict):
for k, v2 in v.items():
p2 = "{}['{}']".format(prefix, k)
print_dict(v2, p2)
elif isinstance(v, list):
for i, v2 in enumerate(v):
p2 = "{}[{}]".format(prefix, i)
print_dict(v2, p2)
else:
print('{} = {}'.format(prefix, repr(v)))
On your data, it’ll print
data['xml']['config']['portstatus']['status'] = u'good'
data['xml']['config']['target'] = u'1'
data['xml']['port'] = u'11'
It’s also easy to modify it to track the prefix as a tuple of keys rather than a string if you need it that way.
回答 5
这是pythonic的方法。此功能将允许您在所有级别中遍历键值对。它不会将整个内容保存到内存中,而是在您遍历字典时逐步执行
def recursive_items(dictionary):
for key, value in dictionary.items():
if type(value) is dict:
yield (key, value)
yield from recursive_items(value)
else:
yield (key, value)
a = {'a': {1: {1: 2, 3: 4}, 2: {5: 6}}}
for key, value in recursive_items(a):
print(key, value)
版画
a {1: {1: 2, 3: 4}, 2: {5: 6}}
1 {1: 2, 3: 4}
1 2
3 4
2 {5: 6}
5 6
Here is pythonic way to do it. This function will allow you to loop through key-value pair in all the levels. It does not save the whole thing to the memory but rather walks through the dict as you loop through it
def recursive_items(dictionary):
for key, value in dictionary.items():
if type(value) is dict:
yield (key, value)
yield from recursive_items(value)
else:
yield (key, value)
a = {'a': {1: {1: 2, 3: 4}, 2: {5: 6}}}
for key, value in recursive_items(a):
print(key, value)
Prints
a {1: {1: 2, 3: 4}, 2: {5: 6}}
1 {1: 2, 3: 4}
1 2
3 4
2 {5: 6}
5 6
回答 6
迭代解决方案作为替代方案:
def traverse_nested_dict(d):
iters = [d.iteritems()]
while iters:
it = iters.pop()
try:
k, v = it.next()
except StopIteration:
continue
iters.append(it)
if isinstance(v, dict):
iters.append(v.iteritems())
else:
yield k, v
d = {"a": 1, "b": 2, "c": {"d": 3, "e": {"f": 4}}}
for k, v in traverse_nested_dict(d):
print k, v
Iterative solution as an alternative:
def traverse_nested_dict(d):
iters = [d.iteritems()]
while iters:
it = iters.pop()
try:
k, v = it.next()
except StopIteration:
continue
iters.append(it)
if isinstance(v, dict):
iters.append(v.iteritems())
else:
yield k, v
d = {"a": 1, "b": 2, "c": {"d": 3, "e": {"f": 4}}}
for k, v in traverse_nested_dict(d):
print k, v
回答 7
基于Scharron解决方案的另一种使用列表的解决方案
def myprint(d):
my_list = d.iteritems() if isinstance(d, dict) else enumerate(d)
for k, v in my_list:
if isinstance(v, dict) or isinstance(v, list):
myprint(v)
else:
print u"{0} : {1}".format(k, v)
A alternative solution to work with lists based on Scharron’s solution
def myprint(d):
my_list = d.iteritems() if isinstance(d, dict) else enumerate(d)
for k, v in my_list:
if isinstance(v, dict) or isinstance(v, list):
myprint(v)
else:
print u"{0} : {1}".format(k, v)
回答 8
考虑到该值可能是包含字典的列表,我正在使用以下代码来打印嵌套字典的所有值。当我将JSON文件解析为字典并且需要快速检查其任何值是否为时,这对我很有用None
。
d = {
"user": 10,
"time": "2017-03-15T14:02:49.301000",
"metadata": [
{"foo": "bar"},
"some_string"
]
}
def print_nested(d):
if isinstance(d, dict):
for k, v in d.items():
print_nested(v)
elif hasattr(d, '__iter__') and not isinstance(d, str):
for item in d:
print_nested(item)
elif isinstance(d, str):
print(d)
else:
print(d)
print_nested(d)
输出:
10
2017-03-15T14:02:49.301000
bar
some_string
I am using the following code to print all the values of a nested dictionary, taking into account where the value could be a list containing dictionaries. This was useful to me when parsing a JSON file into a dictionary and needing to quickly check whether any of its values are None
.
d = {
"user": 10,
"time": "2017-03-15T14:02:49.301000",
"metadata": [
{"foo": "bar"},
"some_string"
]
}
def print_nested(d):
if isinstance(d, dict):
for k, v in d.items():
print_nested(v)
elif hasattr(d, '__iter__') and not isinstance(d, str):
for item in d:
print_nested(item)
elif isinstance(d, str):
print(d)
else:
print(d)
print_nested(d)
Output:
10
2017-03-15T14:02:49.301000
bar
some_string
回答 9
这是Fred Foo对Python 2的回答的修改版本。在原始响应中,仅输出最深层的嵌套。如果将键输出为列表,则可以保留所有级别的键,尽管要引用它们,则需要引用列表。
功能如下:
def NestIter(nested):
for key, value in nested.iteritems():
if isinstance(value, collections.Mapping):
for inner_key, inner_value in NestIter(value):
yield [key, inner_key], inner_value
else:
yield [key],value
引用键:
for keys, vals in mynested:
print(mynested[keys[0]][keys[1][0]][keys[1][1][0]])
三级字典。
您需要在访问多个键之前知道级别的数量,并且级别的数量应该是恒定的(在遍历值时可以添加一小段脚本来检查嵌套级别的数量,但是我没有还没看这个)。
Here’s a modified version of Fred Foo’s answer for Python 2. In the original response, only the deepest level of nesting is output. If you output the keys as lists, you can keep the keys for all levels, although to reference them you need to reference a list of lists.
Here’s the function:
def NestIter(nested):
for key, value in nested.iteritems():
if isinstance(value, collections.Mapping):
for inner_key, inner_value in NestIter(value):
yield [key, inner_key], inner_value
else:
yield [key],value
To reference the keys:
for keys, vals in mynested:
print(mynested[keys[0]][keys[1][0]][keys[1][1][0]])
for a three-level dictionary.
You need to know the number of levels before to access multiple keys and the number of levels should be constant (it may be possible to add a small bit of script to check the number of nesting levels when iterating through values, but I haven’t yet looked at this).
回答 10
我发现这种方法更加灵活,这里您仅提供生成器函数,该函数可以生成键,值对,并且可以轻松扩展以遍历列表。
def traverse(value, key=None):
if isinstance(value, dict):
for k, v in value.items():
yield from traverse(v, k)
else:
yield key, value
然后,您可以编写自己的myprint
函数,然后打印这些键值对。
def myprint(d):
for k, v in traverse(d):
print(f"{k} : {v}")
一个测试:
myprint({
'xml': {
'config': {
'portstatus': {
'status': 'good',
},
'target': '1',
},
'port': '11',
},
})
输出:
status : good
target : 1
port : 11
我在Python 3.6上进行了测试。
I find this approach a bit more flexible, here you just providing generator function that emits key, value pairs and can be easily extended to also iterate over lists.
def traverse(value, key=None):
if isinstance(value, dict):
for k, v in value.items():
yield from traverse(v, k)
else:
yield key, value
Then you can write your own myprint
function, then would print those key value pairs.
def myprint(d):
for k, v in traverse(d):
print(f"{k} : {v}")
A test:
myprint({
'xml': {
'config': {
'portstatus': {
'status': 'good',
},
'target': '1',
},
'port': '11',
},
})
Output:
status : good
target : 1
port : 11
I tested this on Python 3.6.
回答 11
这些答案仅适用于2级子词典。有关更多信息,请尝试以下方法:
nested_dict = {'dictA': {'key_1': 'value_1', 'key_1A': 'value_1A','key_1Asub1': {'Asub1': 'Asub1_val', 'sub_subA1': {'sub_subA1_key':'sub_subA1_val'}}},
'dictB': {'key_2': 'value_2'},
1: {'key_3': 'value_3', 'key_3A': 'value_3A'}}
def print_dict(dictionary):
dictionary_array = [dictionary]
for sub_dictionary in dictionary_array:
if type(sub_dictionary) is dict:
for key, value in sub_dictionary.items():
print("key=", key)
print("value", value)
if type(value) is dict:
dictionary_array.append(value)
print_dict(nested_dict)
These answers work for only 2 levels of sub-dictionaries. For more try this:
nested_dict = {'dictA': {'key_1': 'value_1', 'key_1A': 'value_1A','key_1Asub1': {'Asub1': 'Asub1_val', 'sub_subA1': {'sub_subA1_key':'sub_subA1_val'}}},
'dictB': {'key_2': 'value_2'},
1: {'key_3': 'value_3', 'key_3A': 'value_3A'}}
def print_dict(dictionary):
dictionary_array = [dictionary]
for sub_dictionary in dictionary_array:
if type(sub_dictionary) is dict:
for key, value in sub_dictionary.items():
print("key=", key)
print("value", value)
if type(value) is dict:
dictionary_array.append(value)
print_dict(nested_dict)